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Abstract. We consider a nonlinear regression model that describes a relationship between

input parameters and an output of an experiment. The output is measured repeatedly in several

time points. The regression function is supposed to contain additional random parameters that

remain the same in a single experiment but differ from one experiment to the other. Due to the

additional random parameters the variability of least squares estimates of the parameters of

interest may be large and their distribution may be not normal. For choosing a good design

of experiment we might be interested in the complete joint distribution of the LS estimates. We

compare three methods for approximating this distribution and illustrate the methods by some

examples.
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1 INTRODUCTION

For many experiments a model can be found that sufficiently well describes a relationship

between input variables and an output of an experiment. We assume that measurements of

the output are performed repeatedly in times {ti, i = 1, . . . , n} and the relationship between

the inputs and the output at time ti is modeled by a known function f that contains a vector

of unknown parameters β = (β1, . . . , βp), i.e. we denote fi(β) = f(ti,β). If the functions

{fi(β)} are nonlinear with respect to β and if the outputs {Yi, i = 1, . . . , n} are measured with

random errors {ei, i = 1, . . . , n} that are supposed to be additive, independent and identically

distributed with zero mean and a variance σ2

m we deal with a nonlinear regression model.

In our contribution we assume that the outputs may be affected by an additional vector ran-

dom parameter γ = (γ1, . . . , γk), independent of {ei}, that might express for instance some ma-

terial parameters. The distribution of γ is supposed to be known, here it is normal N (γ0,Σγ).
The goal of statistical inference is to estimate a true value β∗ of the vector parameter of

interest β in the model

Yi = fi(β,γ) + ei, i = 1, . . . , n. (1)

We consider here the least squares estimate:

β̂ = argminβ

∑(
Yi − fi(β,γ

0)
)2
. (2)

Indeed, the statistical inference should not stop at obtaining a point estimate but go on by pre-

senting (1−α)100% confidence regions that express an accuracy of the estimate. Alternatively,

the probability that |β̂j − β∗
j | ≤ ∆j , j = 1, . . . , p for some given {∆j} may also be of interest.

For constructing confidence regions we need to know the probability distribution of β̂, or at

least to know its good approximation. The distribution of {Yi} is affected not only by random

behavior of error measurements {ei} but also by the additional random parameter that causes

a correlation between them. Indeed, the same is true for a distribution of β̂. Especially, it is

important to know at least an approximate distribution of β̂ when several models indexed by

a design parameter d are compared with the aim to find a model that enables to estimate the

parameter β∗ with the best possible accuracy.

In the design experiment problems a decision for selecting an optimal model is based on

variances of coordinates of β̂, or on a function of its variance-covariance matrix (as D-optimal

design, A-optimal design etc.), see [1]. The idea for using these criteria comes from an assump-

tion that the distribution of the estimate β̂ is approximately normal. This is indeed true, when

n is large and the variances V arγj, j = 1, . . . , k as well as the variance σ2

m of the measurement

errors {ei} are all small and the regression functions are only slightly nonlinear with respect to

β and γ. Unfortunately, this is not necessarily true as it is illustrated by the following example

when a random parameter is present.

Example 1.

The following nonlinear regression model is considered

Yi = (1− d) log β + dβ + (1 + a · d)γ + ei, i = 1, . . . , n,

where {ei} are i.i.d. with N (0, σ2

m) and γ is distributed according to N (0, σ2

γ), a > 0. We are

to decide whether to estimate the one-dimensional parameter β from a nonlinear model (d = 0)
with a smaller random noise:

Yi = log β + γ + ei, i = 1, . . . , n,
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or from a linear model (d = 1) with a larger random noise:

Yi = β + (1 + a)γ + ei, i = 1, . . . , n.

In this simple case we can find an exact distribution of least squares estimates in both models.

For d = 0 it is a two-parameters log-normal distribution:

β̂0 = exp
(∑

Yi/n
)
∼ LN (log β∗, σ2 + σ2

m/n),

while for d = 1 it is normal

β̂1 =
∑

Yi/n ∼ N (β∗, σ2(1 + a)2 + σ2

m/n).

Suppose that β∗ = 1.1, σ2

γ = (1/3.3)2, σ2

m = 0.012, a = 0.178 and n = 10, then the variances

of β̂0 and β̂1 are the same being 0.127. The probability density functions of β̂0 and β̂1 are plotted

in Figure 1.
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Figure 1: Probability density function for LSE under two considered models.

When we calculate probabilities that the estimate belongs to a given interval, we get some

confusing results

P (1.1− 0.4 ≤ β̂0 ≤ 1.1 + 0.4) = 0.78,

P (1.1− 0.4 ≤ β̂1 ≤ 1.1 + 0.4) = 0.74,

while

P (1.1− 0.9 ≤ β̂0 ≤ 1.1 + 0.9) = 0.97,

P (1.1− 0.9 ≤ β̂1 ≤ 1.1 + 0.9) = 0.99.

2 Three methods for approximating a distribution of β̂

Our paper presents three methods for obtaining an approximate distribution of β̂. The more

detailed description may be found in [2].

It is well known that the distribution of an estimate β̂ depends on a true value of β∗. This

means that the optimal design depends on a true value of parameter as well. In practice, the
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design is chosen in two steps. First, β∗ is estimated only roughly and then, the design is selected

with respect to this estimate. The procedure may be repeated.

In all presented examples the regression functions are supposed to be linear with respect to

the additional random parameter:

fi(β,γ) = gi1(β)γ1 + · · ·+ gik(β)γk.

This is indeed a strong assumption. In case this assumption is not valid we may replace the

original regression function by its linear approximation at γ0. It works quite well when all

variances V arγj are not too big and the nonlinearity of regression functions with respect to the

coordinates of γ is small.

Method based on linearization with respect to parameter of interest

The method is based on the linearization of the regression functions at the true value β∗.The

approximate distribution is normal with a mean β∗ and a variance-covariance matrix

(F ∗TF ∗)−1F ∗TΣF ∗(F ∗TF ∗)−1,

with F ∗ = || ∂fi
∂βl

(β∗,γ0)||n p
i=1,l=1

, Σ = GΣγG
T +σ2

mI, where G = ||gij(β∗)||n k
i=1,j=1

, provided

the parameter space of β is Rk. If the parameter space is bounded, we obtain a trimmed normal

distribution. The method is very fast. It works very well in many situations but it may fail

sometimes as we will illustrate later.

Monte Carlo simulations method

We repeatedly generate realizations of γ and {ei} from their distributions and numerically

find arguments minimizing least squares function. The quality of this method depends highly on

our ability to find a true minimum. For iterative numerical method we have to choose a starting

value. The choice of the starting value may affect the obtained distribution. The method is very

time-consuming.

Finite sample approximation

The method has been derived in [3] using a theory of projection in differential geometry.

Motivated by problems coming from nonlinear regression with additional random parameter,

the results were generalized in [4].

Under the assumption that measurements errors have a normal distribution the method pro-

vides us with an approximate probability density function in the form:

h
β̂
(β) =

detQ(β,β∗)

(2π)p/2
(
det

(
M(β)

))1/2 exp
{
− 1

2

(
f(β)− f(β∗)

)T
A(β)

(
f(β)− f (β∗)

)}
, (3)

where

M (β) = F (β)TΣF (β),

A(β) = F (β)
(
M(β)

)−1

F (β)T ,

P (β) = ΣF (β)
(
M(β)

)−1

F (β)T ,

Q(β,β∗) = F (β)TF (β) +
(
f (β)− f(β∗)

)T (
I −P (β)

)T
H(β)

4



D. Jarušková

and H(β) = || ∂2fi
∂βj∂βκ

||n p p
i=1,j=1,κ=1

is a three-dimensional array.

The approximate density is calculated on a grid in the parameter space. It is relatively fast

when p ≤ 2 but it is time demanding for p > 2.

In many situations the results of all three methods coincide but there are examples when the

first method fails as in the following example.

Example 2.

We suppose that an experiment consists in obtaining two observations that fulfill:

Y1 = cos(β) + γ + e1,

Y2 = sin(β) + e2.

Note that since sin β = cos(β − π/2) the model is in the form (1) for t1 = 0 and t2 = π/2.

The parameter space for β is [0, π]. The additional random parameter has a normal distribution

N (0, σ2

γ = 0.92) and the measurements errors e1 and e2 are i.i.d. with a normal distribution

N (0, σ2

m = 0.12). Suppose that the true value of β is β∗ = π/2 so that the observations Y1 and

Y2 satisfy the model Y1 = γ+e1, Y2 = 1+e2. Figure 2 presents generated data from this model

together with the corresponding regression functions path. The LS estimate of β is the point on

the path that is closest to (Y1, Y2).
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Figure 2: Generated data from the true model together

with corresponding regression functions path.
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Figure 3: Histogram of estimates of parameter of in-

terest calculated from generated data (4) together with

density function (3).

For this example we may find the exact solution being

β̂ = atan
(Y2

Y1

)
, for Y1 > 0, β̂ = π − atan

(
− Y2

Y1

)
, for Y1 < 0 (4)

and generate values β̂. Figure 3 shows a histogram of estimates calculated from generated

data using (4) together with a density (3). The first method fails here completely as after the

linearization with respect to β at its true value π/2 the variables (Y1, Y2) satisfy:

Y1 = −
(
β − π

2

)
+ γ + e1,

Y2 = 1 + e2.
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Denote the LS estimate in this model by β̃. As β̃ = π
2
− Y1 for − π

2
≤ Y1 ≤ π

2
, and

β̃ = 0 forY1 >
π
2
, β̃ = π forY1 < −π

2
. The distribution of β̃ is a trimmed normal distribution

with a probability P (β̃ = 0) = P (β̃ = π) = 0.04. Figure 4 presents generated values from this

distribution.
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Figure 4: Histogram of LS estimates in the model ob-

tained by linearization.
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Figure 5: Density of estimates obtained by lineariza-

tion and density calculated by (3).

The density function of the trimmed normal distribution and the density function obtained

by the third method are plotted in Figure 5. The discrepancy between these two is obvious. The

density function obtained by a third method approximate the true density function very well.

The following example illustrates that our decision how to select an optimal design might be

affected by our knowledge of the probability distribution of parameter estimate.

Example 3.

In an example introduced by [5] and studied by [6] we have encounter an event that demon-

strates how important is to approximate a probability distribution of a parameter estimate for

selecting a reasonably good design of an experiment.

The aim of the model described in [5] is to estimate thermal properties of a material, i.e.

thermal conductivities λx, λy and a volumetric capacity C, from an experiment when a square

sample [0, 0.05]× [0, 0.05] (m2) is exposed to a constant and uniform heat flux ϕ on the left and

bottom boundaries while the right and top edges are insulated. It is supposed that measurements

are taken at equidistant times by one sensor whose position is to determined.

In [5] it was suggested that the regression function relating temperature to time and a sensor

position may be given as follows:

T (t, x, y;λx, λy, C;ϕ) = θx(t;λx;C;ϕ; x) + θy(t;λy;C;ϕ; y),

θx(t;λx;C;ϕ; x) = 2ϕ√
Cλx

√
tF

(
x̃√
t

)
,

θy(t;λy;C;ϕ; y) = 2ϕ√
Cλy

√
tF

(
ỹ
√
t

)
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with x̃ = (x/2)
√
C/λx, ỹ = (y/2)

√
C/λy and

F (z) =
exp(−z2)√

π
− z

(
1− 2√

π

∫ z

0

e−v2 dv
)
, z ≥ 0.

The heat flux ϕ was supposed to be an additional random parameter distributed according to

a normal distribution N (25 000, 1002) (Wm−2), while λx, λy and C were to be estimated. In

our simplified version λy = 4.7 (Wm−1K−1) and C = 1700000 (Jm−3K−1) are also known

and the only estimated parameter is λx. Moreover, we were looking for an optimal position of

a sensor on a grid in the bottom boundary with a distance 0.0001 (m) between two neighboring

points. The bottom boundary was chosen because the first and the third method applied to a

sparse grid in the entire square sample suggested that the bottom boundary is a region when an

optimal position should be looking for.
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Figure 6: Histogram of LS estimates of λ̂x obtained by the second method and corresponding approximate densities

obtained by the third method for several positions of a sensor.

We started with computing variances for all grid points of the bottom boundary using all three

suggested methods. Surprisingly, all methods provided us with variances that were close to each

other. Applying a criterion of smallest variance all methods decided that the point x = 0.0033
(m) was the best position. Then, we studied the probability distribution of the estimate λ̂x not

only for the optimal position but also in its neighborhood. The density function corresponding

to an optimal position was almost symmetric but when the sensor was shifted only negligibly,

7



D. Jarušková

i.e. 2 mm to the right or to the left, the density of the estimate became extremely skewed as

it could be seen in Figure 6. This effect was clearly detected by the second as well as by the

third method. The position x = 0.0033 (m) seems to be unstable and to put a sensor there is

risky. Indeed, this information cannot be obtained when the entire probability distributions are

not studied and only the variance is considered.

3 Conclusions

An additional random parameter may cause that a least squares estimate of the parameter of

interest may be not normal. The reason is that due to its presence there exists a correlation be-

tween the subsequent observations as was pointed out in [6]. We get much better information on

the required estimate behavior if we are able to approximate its distribution. When parameter is

one or two-dimensional we may use two suggested method. Unfortunately, when the parameter

has more than two-dimensional the suggested methods are time-consuming.
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