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Abstract. In recent years, the use of simulation-based digital twins for monitoring and as-
sessment of complex mechanical systems has greatly expanded. Their potential to increase the
information obtained from limited data makes them an invaluable tool for a broad range of
real-world applications. Nonetheless, there usually exists a discrepancy between the predicted
response and the measurements of the system once built. One of the main contributors to this
difference in addition to miscalibrated model parameters is the model error. Quantifying this so-
called model bias (as well as proper values for the model parameters) is critical for the reliable
performance of digital twins. Model bias identification is ultimately an inverse problem where
information from measurements is used to update the original model. Bayesian formulations
can tackle this task. Including the model bias as a parameter to be inferred enables the use of a
Bayesian framework to obtain a probability distribution that represents the uncertainty between
the measurements and the model. Simultaneously, this procedure can be combined with a clas-
sic parameter updating scheme to account for the trainable parameters in the original model.
This study evaluates the effectiveness of different model bias identification approaches based on
Bayesian inference methods. This includes more classical approaches such as direct parameter
estimation using MCMC in a Bayesian setup, as well as more recent proposals such as stat-
FEM or orthogonal Gaussian Processes. Their potential use in digital twins, generalization
capabilities, and computational cost is extensively analyzed.
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1 INTRODUCTION

Since the first introduction of the term in 2002 [1], the use of digital twins has gained con-
siderable traction across multiple industries in recent years. Initially conceived as a digital
representation of a physical object or system that is continuously updated with real-time data
in the context of Product Lifecycle Management (PLM), nowadays digital twins are applied to
many different fields, ranging from manufacturing process control to augmented reality (AR)
or Internet of Things (IoT) paradigms. In the field of engineering, digital twins have become
a valuable tool for the assessment and management of physical systems. Despite their rapid
adoption, there is still much to be accomplished regarding homogenization and standardization
[2]. Under the definition of digital twin, very distinct types of digital representations of physical
objects are included. In this study, we will focus on digital twins that rely on a computational
model to simulate the behaviour of the physical system under different conditions.

This type of digital twin offers an invaluable tool for the control of complex mechanical
systems. A remarkably relevant application of such a model is the monitoring and assessment
of large structures such as bridges [3,4]. These systems typically provide few opportunities for
the placement of sensors due to their cost and nature, especially in the case of already-standing
structures. The potential of digital twins to increase the information obtained from limited data
makes them an invaluable tool to provide predictions and evaluations for these critical systems
in a non-intrusive manner. Additionally, the use of a simulation model for the virtual system
allows for combining the previous knowledge of the physics that governs the real system with
the measurement data obtained from the sensors to generate accurate predictions even where
observations are not available.

A common first step in the implementation of simulation-based digital twins is fitting the
virtual model parameters to a set of measurements. This is a classical problem where Bayesian
inference excels [S]. Despite this fitting, there usually exists a discrepancy between the pre-
dicted response and the measurements of the system once built. One of the main contributors
to this difference, in addition to potentially unfit model parameters, is the model error or model
bias. It appears as a consequence of the inherent inability of the computer model to reflect
the system’s response in full. Among other causes, this can result from a limited set of equa-
tions to represent the physics of the system, or due to modelling assumptions necessary for the
virtual representation. Every model that aims to replicate a real system is susceptible to bias
independently of its complexity due to the choices and assumptions necessary for its definition.
Therefore, quantifying the model bias is critical for the reliable performance of digital twins.

Model bias identification is ultimately an inverse problem where information from measure-
ments is used to update the original model and to evaluate the fitness of the predictions simulta-
neously. Bayesian formulations can tackle this task. Including the model bias as a parameter to
be inferred enables the use of a Bayesian framework to obtain a probability distribution that rep-
resents the uncertainty between the measurements and the model. Additionally, this procedure
can be combined with a classic parameter updating scheme to account for the trainable param-
eters in the original model. Several approaches have arisen to tackle this problem, however, not
all of them are equally suitable to be used in a digital twin framework.

Precisely, this study aims to evaluate the effectiveness of different model bias identification
approaches based on Bayesian inference methods for simulation-based digital twins. The clas-
sical Bayesian parameter estimation using Markov chain Monte Carlo (MCMC) is taken as a
basis. It will be compared with model bias identification approaches, such as Kennedy and
O’Hagan’s proposal in its original [6] and modularized formulation [7], orthogonal Gaussian
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Processes (GP) [8] and the novel statFEM [9]. The potential use of these methods in digital
twins, their generalization capabilities, and computational cost will also be extensively evalu-
ated. The results of this study will help identify the most efficient and reliable approach for
quantifying model bias in simulation-based digital twin applications, contributing to the ho-
mogenization and standardization of this valuable technology.

This paper first introduces the different approaches and their associated algorithms (Section
[2), then applies them to a simple 1D benchmark case for its comparison (Section [3)), and finally
draws conclusions on the results (Section [4).

2 MODEL BIAS IDENTIFICATION APPROACHES

This section presents the different approaches to be analyzed in the context of digital twins.

2.1 Classical Bayesian inference without bias

The classical Bayesian inference framework is the basis for all the other approaches analyzed
in this study. There exist numerous texts that describe it extensively (e.g. [3]), but here the focus
is on a representative use-case as an implementation of a Monte Carlo-Markov Chain (MCMC)
algorithm with Metropolis-Hastings selection criteria. The general workflow of such an imple-
mentation can be observed at Algorithm I The main objective is to apply Bayes’ theorem to
infer a set of parameters § of a computational model f based on a set of real measurements
y obtained at the points z. To do so, prior distributions are assigned to the parameters 6, to-
gether with a likelihood function, noise and correlation structures. This allows applying Bayes’
theorem to obtain posterior distributions of the parameters. Through an MCMC approach, the
stochastic process eventually converges to an estimation of the posterior distribution given the
observed measurements.

Algorithm 1 Bayesian Inference for Parameter Estimation using Metropolis-Hastings MCMC

1: Define the forward model f(x,#) that maps parameters 6 at points x to measurements y

2: Define the prior distribution p(6) that describes our beliefs about the values of 6 before
seeing the data

3: Define the likelihood function p(y|6) that describes the probability of observing the data y
given the parameters 6. The map is done through the forward model f(x, )

4: Define the noise structure that characterizes the errors in the measurements y

5: Define the correlation structure that characterizes any dependencies or relationships be-
tween the measurements y

6: Initialize the MCMC sampler with an initial parameter value 6, and a desired number of
posterior samples N

7: fori < 1to N do

8: Propose a new parameter value * by sampling from a proposal distribution ¢(6*|0;_1)

p(W|0*)p(0*)q(0;110*) )
(y]0i—1)p(0i—1)q(0]0;—1)

9: Compute the acceptance probability A = min (1, 5

10: Sample a random number u from a uniform distribution on [0, 1]
11: Apply selection criteria (e.g. Metropolis-Hastings)
12: end for

13: Compute the posterior distribution p(6|y) using the set of posterior samples 9“-]\;1
14: Compute summary statistics and/or generate plots to analyze the posterior distribution

p(@ly)
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The following requirements must be fulfilled to implement a classical Bayesian inference
approach without bias on the set of latent parameters ¢ using a sampling procedure such as
Metropolis-Hastings MCMC:

* the full description of the forward model must be specified beforehand.

* The forward model must be evaluated at every sampling point. If it is computationally
expensive, a surrogate model can be generated. Alternatively, a different inference proce-
dure can be implemented.

* Information of the prior distributions of § must be available.

* Knowledge about the correlation and noise structures for the measurements must be avail-
able.

These requirements present a significant set of challenges to the simplest version of this
framework in the context of digital twins. First, real-world systems are extremely complex,
therefore modelling assumptions are necessary to generate computer models that can provide
useful information in a reasonable setting. This approach acts on the parameters of such models,
which will lead inevitably to errors derived from the modelling assumptions. This happens both
if the description of the forward model is incomplete or if we consider it fully detailed. If
a surrogate is introduced as a solution for expensive models, further deviations from the true
system must be expected. Furthermore, digital twins often require almost-real time response in
their predictions as a source of information, which can only be achieved if the evaluation of the
forward model with the estimated parameters is performed in a reasonable time, giving more
arguments for a surrogate approach.

Additionally, reliable information on the prior distributions of the latent parameters may
not be available for the real model. Analogously, noise and correlation structures are often
inferred from the model and the measurements themselves, as they are usually not known be-
forehand, increasing the number of potential sources of bias that the approach does not account
for. These assumptions on the prior distributions have a notorious impact on the performance
of the model, potentially increasing or reducing the uncertainty and accuracy of the predictions.
Inverse problems like this, especially when the number of latent parameters grows, tend to be
ill-posed, which is at its time affected by the choice of priors.

Nevertheless, such an approach can be useful for digital twins where enough reliable infor-
mation about the real system is available. It allows estimating the posterior distribution of the
latent parameters to be inferred, which at its time enables generating easily predictions on the
posterior distribution of the system’s response. The prediction time and computational costs
depend exclusively on the definition of the forward model, which can be controlled through
the use of surrogates. When the latent parameters have physical meaning, e.g. they represent
the material parameters of a structure, knowing their posterior distribution may be critical for
identifying potential failures or damages in the real system.

2.2 Kennedy and O’Hagan (KOH)

Kennedy and O’Hagan’s approach [6] has risen as the canonical method for introducing bias
quantification in a Bayesian inference procedure. The main difference is the inclusion of a bias
term b in the comparison with the measurements to account for the part of the real system that



Daniel Andrés Arcones, Martin Weiser, Faidon-Stelios Koutsourelakis and Jorg F. Unger

the computer model cannot reliably represent. Therefore, for an set of parameters ¢ and a noise
term e:

y(a) = f(z,0) + b(x) +e (D)

Notice how the bias b does not depend on the parameters 6. In effect, the definition of the bias
as a measurement of the model’s lack of fitness is only possible when considering the optimal
set of § parameters. Kennedy and O’Hagan suggest representing this bias term as a Gaussian
Process (GP) defined by a mean i, and a covariance function k(z, 2), which using a stationary
kernel function can be defined through a standard deviation o, and a length-scale ¢,. The choice
of kernel depends on the system to study. Coincidentally, they recommend surrogating f by a
GP in an analogous way. However, f depends on 6, which are to be inferred and vary during
the sampling procedure. Therefore, a training dataset Y, must be generated with combinations
of (z,0) parameters to train it. To generate such a dataset efficiently, a Design of Experiments
(DoE) approach, such as Latin Hypercube sampling, can be followed. Algorithm [2]adapts the
workflow proposed for this approach. During the inference procedure, following for example
the previous MCMC scheme, both the GPs for b and f are fitted to the set of measurements
Y = Yy + Yp, where Yy are the real measurements. This is done in the same process as
the latent parameters 6 (and eventually the noise term o) are estimated. Substituting these
parameters in Equation (1} it is possible to regenerate the full biased response.

Algorithm 2 Kennedy and O’Hagan’s (2001) approach for Bayesian inference with model bias

1: Approximate the computer model f(x,f) as a GP with mean function p¢(x,#) and co-
variance function k((z,0), («’,6")) with standard deviation o and kernel function with
lengthscale ¢

2: Generate model samples Y); from the original computer model f evaluations design of
experiments (DOE) methods that cover evenly the space (x, 0)

3: Define the bias model b(x) as a GP with mean function y,(x) and covariance function
ky(z, x") with standard deviation o, and kernel function with length-scale /,,

4: Define the joint model as y(z) = f(z,0) + b(x) + e with the best fit at 6* giving y(z) =
f(x,0%) + bg(x) + oI, where o is a noise term. Define its likelihood, noise and correlation
models

5: Use Y), and original samples Y7 to fit the parameters 0, and e using MCMC at the same
time as the GPs for f and b

6: Being Y = (Y, Yr)T, compute the posterior distribution p(|Y") using the set of posterior
samples obtained from the MCMC sampler

7: Compute summary statistics and/or generate plots to analyze the posterior distribution
p(0Y)

8: Regenerate the full biased response f(x,0*) + by(x)

The only additional requirement when compared with a classical Bayesian inference ap-
proach is the need of defining the GP for the bias term. This method incurs the same pitfalls of
ill-posedness and extreme dependency on the prior’s choice. In the case of KOH, the identifia-
bility issues are even more critical. Inaccurately defined system priors and inference procedures
may tend to compensate for the model error by increasing the bias instead of modifying 6,
which leads to posterior distributions with increased variance. Alternatively, the recommen-
dation of substituting the computational model with a surrogate is often already implemented
in the context of simulation-based digital twins in order to speed up the response times of the
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virtual representation. Additionally, information on the distribution of the bias can be used by
the user to identify deficiencies in the virtual model and its assumptions.

2.3 Modularized KOH

Despite its status as a seminar paper [10], criticism of Kennedy and O’Hagan’s approach
has arisen over the years. One of the main points of contention is the choice of inferring con-
currently the GPs for the computational model f with the bias b and latent parameters 6. As
exposed by Bayarri in [/]], this approach potentially leads to the contamination of the whole
inference process due to badly defined parts of it. The proposed alternative is a modularization
of Kennedy and O’Hagan’s approach by separating the training of the GP for the computa-
tional model and the inference on the bias and the latent parameters. An algorithm for such an
approach can be observed in Algorithm

Algorithm 3 Modularized version of Kennedy and O’Hagan by Bayarri (2009)

1: Approximate the computer model f(z,#) as a GP with mean function y¢(x, #) and kernel
function k((z, 0), (2, 6))

2: Generate model samples Y), from the original computer model f evaluations design of
experiments (DOE) methods that cover evenly the space (z, 0)

3: Fit the GP for f(x,#) using Y),, for example using Maximum a Posteriori (MAP) estima-
tion

4: Define the bias model b(x) as a GP on the residuals R = Yr— f (X, 6) for a given evaluation
of # at measurement positions X

5: Use only original samples Y7 to fit the parameters of b, 6, and o using MCMC

6: Compute the posterior distribution p(6|Yr) using the set of posterior samples obtained from
the MCMC sampler

7. Compute summary statistics and/or generate plots to analyze the posterior distribution
p(0YF)

8: Regenerate the full biased response f(x,0*) + by(x)

The modularized version of Kennedy and O’Hagan’s approach does not require additional
information on the real system, while exhibiting a more robust behaviour. According to Bayarri
[7], modularization is a good strategy to isolate good modules from suspect ones to avoid con-
tamination. This is especially relevant when applying the approach to an already existing virtual
representation of a digital twin. For example, with a modularized approach, the surrogate of the
computational model is trained independently from the inference procedure, which allows us-
ing seamlessly an already existing surrogate. Additionally, this compartmentalization can be
advantageous in the context of digital twins, as any of the modules can be improved or modi-
fied as needed without having to modify the others. Understanding digital twins as tools under
constant revision throughout the life of the real system, they are expected to require updates and
changes in the virtual modules. Purely from the point of view of estimating the model bias, the
modularized approach results advantageous when dealing with identifiability and confounding
issues present in the original one. Due to these advantages, the modularized version has been
adopted as the preferred implementation of Kennedy and O’Hagan’s approach to model bias in
Bayesian inference problems.
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2.4 Orthogonal Gaussian Processes

Orthogonal Gaussian Processes are formulated by Plumlee [8] as a response to the identifia-
bility problems exhibited by Kennedy and O’Hagan’s approach with respect to the model bias.
To avoid that during the inference procedure the bias is overestimated, Plumlee established an
orthogonality restriction such that the GP for the bias b represents exclusively the part of the
measurements that cannot be explained by the best-fitted computer model f. The orthogonality
condition is defined with respect to a given loss function on the residuals between measure-
ments and model observations. This condition is implemented as a modification on the prior of
the GP for the bias. The new parameters for the GP prior defined as b(z) ~ GP(us, Cp) are:

finy () = w(x)" Mg(My W M)~ Qp (2)

and
Chy (2, 2') = ky(, ') — w(x) Mp(MFW M)~ M w(x') (3)

where £y is the original correlation function prescribed by a kernel and a standard deviation, W
is the realization of k;, over the set of measurements £ where f is evaluated, w is the correlation
vector obtained from evaluating k;, between x and &, M is a matrix of the derivatives of the
mean /5 of the GP of f with respect of the parameters ¢ and Q a vector of the sum of the
derivatives of the variances v;(£,0) = k((&,6),(£,0)) of the GP of f with respect to each
latent parameters. Details on the formulation can be observed in [8]]. With these modifications,
Algorithm [ represents the workflow for the implementation of the inference procedure using
orthogonal GPs.

Algorithm 4 Orthogonal Gaussian Processes approach by Plumlee (2017)

1: Approximate the computer model f(z,#) as a GP with mean function /¢(z, §) and kernel
function k((x, 0), (z/,0"))

2: Generate model samples Yj; from the original computer model f evaluations design of
experiments (DOE) methods that cover evenly the space (x, )

3: Fit the GP for f(x, ) using Y, for example using Maximum a Posteriori (MAP) estima-
tion

4: Define the bias model b(x) as a GP on the residuals R = Yr— f (X, 6) for a given evaluation
of 0

5: Impose an orthogonal prior to the GP of b by defining b(z) ~ G P, Cy) where p, (z) =
w(z)T My(MIW Mg)~*Qq and Cy, (x, 2') = ky(x, ') — w(x)” Mo(MF W Mg) ™' M w(z")
(see Equations[2]and

6: Use only original samples Y7 to fit the parameters of b, 6, and o using MCMC

7: Compute the posterior distribution p(6|Yr) using the set of posterior samples obtained from
the MCMC sampler

8: Compute summary statistics and/or generate plots to analyze the posterior distribution
p(0YF)

9: Regenerate the full biased response f(x,0*) + by(x)

The main difference regarding the implementation of the inference procedure between Plum-
lee’s and Kennedy and O’Hagan’s approach is the requirement of the derivatives of the distri-
bution of f with respect to the latent parameters. If f is expressed as a GP surrogate, that only
involves a slight extra computational effort, as they are usually already known and calculated

7
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in the inference step. Other computational models may present themselves as more challeng-
ing for this approach, but it should always be possible to apply finite differences differentiation
during the sampling procedure. In exchange for the extra computational cost, the inferred latent
parameters present reduced variability than with the original approach, as shown in [8]. This
allows for more precise predictions and reduces the identifiability issue present in the inverse
problem. Regarding its integration in a digital twin, the resources are only additionally needed
in the inference step, therefore any other part of the implementation is analogous to the original
approach.

2.5 StatFEM

One of the most recent approaches for adding model bias to a more complex computational
model is the so-called statistical Finite Element Method (statFEM) developed by Girolami et
al. [9]. Contrary to the classical Bayesian approaches, the objective of statFEM is to estimate
the system’s response u from a Finite Element (FE) approximation instead of inferring the
parameters ¢ that are present in such a model. This allows the use of inaccurate models and
assumptions, as the modelling choices have a smaller impact on the inference results. However,
this is possible only under strong impositions and assumptions on the nature of the statistical
model. Respecting the notation from [9] such statistical model is defined as:

where y is the set of real measurements, z is the real underlying system, u is the system’s FE
response, P is the projection matrix from u to the measurements space, p is a scalar regression
term, d is a bias term represented as a zero-mean GP with covariance defined by a stationary
kernel, standard deviation o, and length-scale ¢4, and e a noise term. Supposing normality in
all the terms in the probabilistic sense, it is possible to apply Bayes’ theorem to the statistical
model and obtain directly the posterior distributions of u|y and z|y from the prior distribution
of u and the statistical hyperparameters (p, o4, {4, €).

Let u be a stochastic FEM model u(x, f) dependant on the parameters ~ and the source terms
f such that it is governed by a linear PDE. Then, the solution of the PDE can be expressed as
A(k)u = f, where A is the linear transformation matrix from the discretization of u. As
either x or f are defined as stochastic variables and A is a linear transformation, it is possible
to obtain a prior distribution of v from the imposed prior distributions of x or f. Given that
all components of Equation [ are modelled as normal (either multivariate normal distributions
or GPs), it is possible to calculate analytically i, and C,. Therefore, using this analytical
expression of the posterior of u for a given set of statistical hyperparameters, it is possible
to apply an inference procedure to those hyperparameters as a first step. Once their posterior
distributions are obtained, a set of estimators (e.g. maximum likelihood estimators) can be input
in the expressions for ji,), and C,,, to recover a posterior distribution of the response field. This
procedure is shown in Algorithm [3]
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Algorithm 5 StatFEM by Girolami et al. (2019)

Require: Assume all variables can be modelled as Gaussians
1: Define the statistical model y = 2z + e = pPu+d+ e
2: Define the stochastic FEM model u(k, f) by defining a probability distribution on the
source term f or on the parameters .
Require: Linearity of the PDE that defines u, giving A(k)u = f
3: Apply the perturbation method (1st order Taylor series expansion of u) to obtain the mean
{4, and covariance matrix C,, for the prior distribution of v modelled as a Gaussian
4: Calculate analytically 1, and C,, as a function of p, o4 and [;. This is possible because
of the assumption of normality
5: Infer p, o4 and ¢4 from y using the analytical posterior distribution of u for a given set of
statistical hyperparameters
6: Use (point) estimators of p, o4 and ¢, to calculate p(u|y) and p(z|y) at the data points.
7. Predict values of the fitted distributions at points without data.

One of the main advantages of statFEM is the possibility of using deficient or uncertain mod-
els, as is typically the case with representations of real systems. The variability is introduced
by the probability model of the system’s components, which allows the inclusion of previous
information into the model. Nevertheless, a defective estimation of this variability may lead to
an overestimation of the bias term, as with traditional Bayesian approaches. Additionally, the
FE model is only evaluated when calculating the prior distribution of the response field, making
this a very well-suited approach for expensive models that would require complex surrogates.
However, this evaluation of the prior scales very poorly with the number of variables and data
positions, which can hinder its performance in some applications. Each new data position where
predictions are requested requires additional evaluations of the FE model, therefore it would not
be recommended for digital twins where the location of the predictions is not known beforehand
or a large set of predictive data positions is required. Nevertheless, new data points at known
positions can be added to the dataset easily, enabling its training to represent the new conditions
of the system. It must be noted that no information on the computational model parameters is
obtained, which can be undesirable for some digital twin applications that rely on the analysis
of such parameters.

Arguably, excluding the number of data positions and variables, the main limitations come
from the type of systems that can be treated with the current formulation. The original imple-
mentation of statFEM requires a linear static PDE and assuming normality in the response field.
Duffin [11]] modified statFEM to deal with non-linear time-dependent problems at the expense
of computational speed, which may limit its applicability to digital twins that require a fast
response. Narouie et al. [12] avoided the limitation of linearity in the PDE by applying a Poly-
nomial Chaos Expansion of « to obtain its prior distributions instead of the original perturbation
method with a 1st-order Taylor expansion. This approach introduces a further approximation on
u, increasing the uncertainty or the computational cost depending on the number of modes to be
evaluated from the PCE. In any case, the ability to infer the response of a model independently
of its assumptions and additionally include information on the bias makes statFEM a promising
approach for specific digital twins that can be accommodated to its requirements.
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3 APPLICATION AND RESULTS

The chosen benchmark is the ”Pedagogical example” presented in [8]]. It is a simple 1D case
that should be suitable for the different approaches. Taking X = [0, 1], the original measure-
ments are taken from a “true” model governed by y(z) = 4x + z sin 5z, while the computer
model is f(z,t) = tz. Measurements are collected for X = [0, 0.8] and are perturbated with
Gaussian noise of variance v?> = 0.02. The objective is to fit the variable ¢ such that the com-
puter model reflects the measurements. There is a clear bias between y and f, therefore it
can potentially be quantified. In the original paper, the authors limit themselves to a reduced
comparison between the original KOH and orthogonal GPs with norms L2 and Lyy2. In this
study, we extend the analysis to a modularized version of KOH and statFEM, focussing on the
applicability of each method to the implementation of a digital twin.

3.1 Bias-free Bayesian inference

For a bias-free approach, a normal prior with mean 3.0 and standard deviation 1.0 is pre-
scribed for ¢. Then, the MCMC algorithm from Section [2.1]is applied for 2000 steps after 200
more of burn-in. The software package probeye is used to perform the inference procedure.
The results can be observed in Figure 1| As expected, the best-fitted model, though certain,

Fitted model predictions

401 @ Generated data points
Ground-truth model
3.5 1 — Fitted model t=3.96, std=0.01

3.0 1
2.5 1
= 2.0 1
1.5 1
1.0 +

0.5 A

0.0

0.0 0.2 0.4 0.6 0.8 1.0
X

Figure 1: Fitted system for bias-free Bayesian inference.

includes the bias inherent to its definition. Additionally, there is no influence on the computer
model by the lack of data with > 0.8. These results prove the necessity of accounting for
model bias, as the computer model could only be used for predictions when the certainty of its
validity is very high.

10
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3.2 Modularized KOH approach

Next, a modularized version of KOH’s approach is implemented. In a first step, a GP is
trained for the computer model f. In such a simple case, training a GP should not be required,
but it is included here to account for the potential variability that appears when surrogating
a more complex system. Following the methodology indicated in [8], in this benchmark the
kernels for every GP would be a Matérn kernel with v = 3/2 and correlation length ¢ =
0.5/v/3. A grid of computational observations of 10 x 10 regularly spaced samples in (x,t) =
[—0.2, —0.2] x [1.2,5.0] is evaluated as the training dataset for the GP of f. Once trained, it
is used as a predictor for the inference procedure. For ¢, an analogous normal distribution is
provided as prior. This process is implemented using the software package PyMC [13]]. The
results obtained are shown in Figures [2]and [3]

Prediction vs. Ground truth Bias plot

s —— Bias GP
——- Bias GP + std

3.0

0.8
2.5 A
2.0 1 0.6 -

> 1.5 A

Residual

0.4

1.0+ ® Generated data points
Ground-truth model

—— Fitted model without bias

—=—- Fitted model without bias + std

—— Fitted model with bias

—=—- Fitted model with bias + std

0.2 4
0.5

0.0 4 0.0

T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X

(a) Fitted results (b) Bias

Figure 2: Fitted system and bias for Kennedy and O’Hagan’s approach.
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Figure 3: Posterior distribution for latent parameters in KOH. The plot for “theta” represents
the posterior distribution of the best fitted ¢, “eta_2” represents the scale factor of the GP for the
bias term and “o_2” represents a Gaussian noise scale.

The corrected results clearly align better with the measurements than using the bias-free ap-
proach. There is however more variability in the predictions. This comes from the introduction
of a GP as a surrogate model for f and the model bias inference itself. Modifications in the
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prior distributions had a significant impact on the fitted posterior distributions. Additionally, it
can be observed that the further from the training data points, the larger the variance in the bias.

3.3 Orthogonal GPs approach

The procedure followed to implement the is analogous to the previous one, with a difference
in the definition of the correlation function for the GP of the bias. As the computer model
is simple, it is possible to express analytically the new orthogonal priors for the correlation
functions [8]. Being r(x,z’) the original correlation function with a Matérn kernel 3/2 and a
loss Lj2, the new correlation for the bias is:

ro(x,x') = 5.19r(z, 2") — 23.52h(x)h(z") (5)

where

20+ 3 6x — 13
+

h(z) =2z — exp(—2x) exp(2zx — 2) (6)

Meanwhile, for the loss Ly 2:
ro(x,2') = 1.27r(z,2") — 0.78h(x)h(z") (7)

where
6x + 1

h(z) = 2x — exp(—2z) + v+l exp(2z — 2) (8)

Applying these new priors for the correlation of the bias, it is possible to obtain the results in-
dicated in [8]. These results show lower variance than the KOH approach, where ¢ (the best
estimator for ¢) is centered around the minimizer of the loss. Therefore, the model fitted using
orthogonal GPs provides predictions closer to the measurements, while the bias corrects exclu-
sively the part of the real system that cannot be explained by the computational model. The
choice of loss weights which characteristics of the measurements must be considered stronger.
The loss L2 will weigh more fitting to the actual points, which provides higher ¢ due to the
initial slope of the real measurements. Alternatively, the loss Lyy2 intuitively weighs in addi-
tionally the first derivative of the measurements underlying process, providing lower values for
6. The choice of this loss is an additional consideration for practical implementations, as it will
vary depending on the application of the digital twin.

3.4 StatFEM approach

To implement statFEM it is required a FEM model of the system that can be represented
as a linearized version of a PDE, therefore the computer model from the benchmark must be
modified accordingly. In this case, the example can be approximated by a truss under axial load.
The solution of such a system is a linear function ku = f, where u is the deformation and f is
the force. Adjusting k£ and f, we obtain the same linear system as in the other examples. The
variability is introduced as a distribution on the source term, recreating the case when the load
is unknown beforehand and potentially not uniform across its length. The prior results can be
observed in Figure[#a] The posterior after the inference procedure is presented in Figure 4bl As
it can be appreciated, the influence of the initial model is still dominant over the measurements.
This is a typical case for statFEM implementations, as the differences between the output v and
the measurements tend to be seen by the inference model as a product of the variability of w.
This effect is reduced when more than one sample is present for every value of = (see [9]]), as the
certainty of the model at the data points is increased. It can be observed that the bias is added
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Figure 4: Solutions for statFEM.

as if the fitted model were to remain close to the original region of the prior, while the corrected
system includes the data points. Despite depending on the variability introduced by the source
term, the output is less sensitive to the defects in the model, and the predictions generated by
the fitted model will reflect this stability. This makes statFEM the appropriate method when the
reliability of the measurements is decisive, as the real values for the prediction will likely be
found inside the region predicted by the model. Additionally, the uncertainty in the predictions
comes directly from that introduced to the initial model, which reflects faithfully the previous
knowledge in the system.

3.5 Comparison

First, it must be noted that all the approaches that include model bias allow for quantification
of the uncertainty introduced by the choice of an incomplete computer model. Nevertheless,
this is done by adding further variance in the results. This may seem an undesirable effect, but
being aware of this variance while obtaining results closer to reality allows for better-informed
decision-making. The focus now resides on 1) reducing the variability of the results as much as
possible, and 2) providing reliable, repeatable and stable predictions with the fitted model.

Regarding the smallest variability, orthogonal GPs triumph over the other methods analyzed
with the simple example. However, this variance is intrinsically related to the choice in the
priors, therefore a real application of a digital twin will depend almost exclusively on the infor-
mation available and the measurements observed. Kennedy and O’Hagan’s approach is the one
that suffers the most due to this dependency, in exchange for being the simplest to integrate and
that requires the least information about the system. Alternatively, statFEM introduces the vari-
ance through prior knowledge of measurable parameters of the system instead of introducing a
reasonable expectation for the prior distribution, which arguably improves the insight provided
by it. The spread of statFEM’s results is generally larger than in the other approaches, but it
would greatly benefit from measurements repetition.

Concerning the reliability of results, statFEM offers the most stable predictions due to its
closeness to the prescribed system. The other approaches tend to overfit more to the model,
relying on the available measurements. KOH seems to be the one with the least robust results,
as the non-directed stochastic nature of the inference procedure does not put any restriction on
the fitness of the bias, suffering from the ill-posedness of the problem.
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Finally, an analysis of how each of the models would be implemented in a digital twin is re-
quired. The KOH approach is the easiest to implement and can be adapted to virtually any model
and measurements without many considerations. Orthogonal GPs require access to derivatives,
therefore surrogating the computer model is usually a hard requirement that may reduce its
range of application. Furthermore, manipulating the covariance matrix can result in larger com-
putational times, which should be considered carefully for problems highly dimensional in the
latent parameters. Alternatively, statFEM requires a FE model available for the system, and
its original formulation imposes strong assumptions of linearity and time independency. This
makes it unsuitable for many applications in its current form. Nonetheless, statFEM can be a
good alternative for those cases that fulfil these requirements, as it is independent of the choice
of latent parameters and relatively robust against deficient modelling assumptions. It is in fact
invariant to the choice of latent parameters, but it escalates very poorly with the increase in
dimensions and number of measurement positions, which makes it paradoxically a better alter-
native the fewer sensor points are available.

4 CONCLUSIONS

In this study, we compared the effectiveness of different model bias identification approaches
regarding their application to digital twins. Namely, using the classical Bayesian inference
implementation as the basis, we analyzed Kennedy and O’Hagan’s approach in its original and
modularized version, orthogonal GPs and statFEM. They were applied to a simple 1D example
as a benchmark.

Through extensive evaluations, we found that every implementation outperforms bias-free
methods, having different potential applications. Orthogonal GPs provide the least variance in
the estimation of the updated model parameters with bias. StatFEM is proposed as the choice
when reliability is to be prioritize and its requirements can be satisfied. Nevertheless, each
model bias identification approach requires knowledge about the behaviour of both the real
and computational model, and this information will greatly influence the performance once
implemented in the digital twin.

Nevertheless, the findings of this study have significant implications for the development
of digital twins as a valuable technology, as they contribute to a safe, efficient and reliable
implementation of digital twins by combining simulations and measurement data. A model
whose bias is adequately quantified provides invaluable information to the end users, who would
be informed not only on the measurements and predictions but on the fitness of the model itself.

In conclusion, the results of this study have identified the most efficient and reliable approach
for quantifying model bias in simulation-based digital twin applications. In future work, two
main research paths can be discerned. First, the different models should be applied to a larger
variety of cases and real measurement data. Implementation concerns such as the data structure
or behaviour when providing predictions cannot be studied in a simple example as the one
proposed. Alternatively, there is still room for improvement in the implementation of statFEM
and similar models, as its applicability is reduced by its requirements.

REFERENCES

[1] M. W. Grieves, Virtually Intelligent Product Systems: Digital and Physical Twins, Com-
plex Systems Engineering: Theory and Practice, American Institute of Aeronautics and
Astronautics, Inc., 2019, pp. 175-200.

14



Daniel Andrés Arcones, Martin Weiser, Faidon-Stelios Koutsourelakis and Jorg F. Unger

[2] F. Tao and Q. Qi, Make more digital twins. Nature, 573, Art. no. 7775, Sep. 2019.

[3] Y. Congetal., A digital twin of bridges for structural health monitoring, Structural Health
Monitoring 2019, Stanford, USA, Nov. 2019.

[4] F. Sanfilippo, R. T. Thorstensen, A. Jha, Z. Jiang, and K. G. Robbersmyr, A Perspec-
tive Review on Digital Twins for Roads, Bridges, and Civil Infrastructures. 2022 Interna-
tional Conference on Electrical, Computer, Communications and Mechatronics Engineer-
ing (ICECCME), Maldives, November 16-18, 2022.

[5] J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems. Springer
London, Limited, 2006.

[6] M. C. Kennedy and A. O’Hagan, Bayesian calibration of computer models. Journal of the
Royal Statistical Society: Series B (Statistical Methodology),63, Art. no. 3, 2001.

[7] M.J. Bayarri, J. O. Berger, and F. Liu, Modularization in Bayesian analysis, with emphasis
on analysis of computer models. Bayesian Analysis, 4, Art. no. 1, Mar. 2009.

[8] M. Plumlee, Bayesian Calibration of Inexact Computer Models. Journal of the American
Statistical Association, 112, Art. no. 519, Jun. 2017.

[9] M. Girolami, E. Febrianto, G. Yin, and F. Cirak, The statistical finite element method
(statFEM) for coherent synthesis of observation data and model predictions. Computer
Methods in Applied Mechanics and Engineering, 375, p. 113533, May 2019.

[10] R. B. Gramacy et al., Calibrating a large computer experiment simulating radiative shock
hydrodynamics. Annals of Applied Statistics 2015, 9, No. 3, 1141-1168, Oct. 2014.

[11] C. Duffin, Statistical finite element methods for nonlinear PDEs. PhD. Thesis, University
of Western Australia, 2022.

[12] V. B. Narouie, H. Wessels, and U. Romer, Inferring Displacement Fields from Sparse
Measurements Using the Statistical Finite Element Method. ArXiv, Dec. 2022.

[13] J. Salvatier, T.V. Wiecki, C. Fonnesbeck, Probabilistic programming in Python using
PyMC3. Peerj Computer Science, 2:€55, 2016.

15



	INTRODUCTION
	MODEL BIAS IDENTIFICATION APPROACHES
	Classical Bayesian inference without bias
	Kennedy and O'Hagan (KOH)
	Modularized KOH
	Orthogonal Gaussian Processes
	StatFEM

	APPLICATION AND RESULTS
	Bias-free Bayesian inference
	Modularized KOH approach
	Orthogonal GPs approach
	StatFEM approach
	Comparison

	CONCLUSIONS

