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Abstract. We consider the problem of learning time-consuming functions defined over un-
ordered sets of vectors. Such functions arise frequently, in particular in the context of networks
of devices whose number is not fixed and that interact with each other. A working example is the
modeling of a wind farm. Unordered sets of vectors are a mix of integer and continuous input
variables suitable for functions that are permutation-invariant. The time-consuming aspect of
the functions is, classically, treated by approximating them with a Gaussian process.
This study addresses the problem of defining valid and efficient covariance kernels over clouds
of points in the context of Gaussian process surrogate modeling.
We review methods for defining such kernels. These kernels are compared on a set of analytical
functions inspired from different engineering problems, such as the design of experiments and
the modeling of wind farms production. The extrapolation properties of the kernels are tested
on geometrically transformed clouds.
We show that modeling 2D clouds of points as supports of discrete uniform distributions should
be preferred to a Gaussian representation of the clouds. A detailed investigation of the good
performance of MMD-based kernels illustrates how they adapt their hyperparameters to the
geometrical properties of the studied functions.
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Main notations and abbreviations

• Bhatta, Bhattacharyya kernel, probabil-
ity product kernel with Gaussian distribu-
tions, see (11).

• d ∈ N, dimension of a vector.

• dψ(, ) a metric composed with the map-
ping ψ.

• δa, Dirac function, Rd → {1, 0},x 7−→
δa is 1 if x = a, 0 otherwise.

• DoE, Design of Experiments.

• F set of functions over clouds of points,
f : X → R, X 7→ f(X).

• Gauss-Wass, substitution kernel with
Wasserstein distance between Gaussian
distributions, see (4).

• θ hyperparameters, they can be scalars or
vectors.

• Θ vector of hyperparameters.

• K a kernel or covariance function, K :
X × X → R.

• kH is a kernel used in the calculation of
the mean embedding of a distribution.

• MMD, Maximum Mean Discrepancy.

• MMD, substitution kernel with MMD
(between discrete uniform distributions),
see (8).

• µX mean embedding of a measure asso-
ciated to X .

• n-MeanMap, normalized Mean Map Ker-
nel, see (10).

• n, nmin, nmax ∈ N, sizes of vector sets,
nmin ≤ n ≤ nmax.

• P any distribution defined over Rd.

• PX a distribution associated to a set of
points X .

• RBF, Gaussian Radial Basis Function
kernel, also known as squared exponen-
tial or Gaussian kernel.

• RFK, Relevant Feature Map kernel, see
(2.4).

• RKHS, Reproducing Kernel Hilbert
Space.

• Slice-Wass, substitution kernel with
Sliced-Wasserstein distance, see (6).

• X ∈ X is a set of n unordered points
{x1, . . . ,xn}, where xi ∈ Rd , i =
1, . . . , n. Cloud of points. X is invariant
with respect to any point permutation.

• ψ a mapping from X to a metrical Space.

• X set of clouds of points (X).

We use indifferently the notation P to denote either a probability distribution (a normed measure, such
as P = N (0, 1)) and the corresponding probability density function (pdf) (such as P (x) = e−x

2/2/
√
2π).

1 Introduction

1.1 General context

We consider functions having inputs in the form of sets of vectors (or points) and that are invariant
under permutation. Furthermore, the functions studied are assumed to be time-consuming and are seen
as black boxes, which means that no information regarding their differentiability is known. An example
of such function is the simulation of the power production of a wind farm according to the number
and the positions of the turbines in a given area: this wind farm is parameterized as the set of vectors
X = {x1, ...,xn} where n is the number of turbines and xi , i = 1, . . . , n is the vector dimension d = 2
of longitude and latitude; f(X) is a realistic simulation of the wind farm production. It is costly because
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it involves Computational Fluid Dynamics codes. Other examples of costly functions of clouds of points
are systems of water wells, systems of antennas or any other scalable network of interacting devices. A
substantial evaluation cost for f(X) prevents analyzing and optimizing the system described by X .

Therefore, the goal of our work is to approximate the function f(X), where X is an unordered set
of points, by computationally more efficient functions, f ≃ f̃ = h(D). f̃ , the metamodel or surrogate
model, is learned from a given input-output set, D = {(X1, f(X1)), . . . , (XN , f(XN ))}, N being the
number of observations and h a modeling methodology.

In this paper, we focus primarily on Gaussian process regression (1) in order to define f̃ . This
metamodel is probabilistic, meaning that it defines a full probability distribution for f̃ given D, rather than
a single, deterministic value. Gaussian processes are mainly characterized by their covariance functions,
called kernels, which must be semi-positive definite (cf. Section 2). The positive definiteness constrains
the choice of the kernel.
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Figure 1: Two clouds of points in d = 2 dimensions with n = 15 points for the blue cloud and n = 10 points for
the red one.

This paper addresses the problem of defining semi-definite positive kernels over unordered sets of
vectors (i.e., clouds of points). The numbers of vectors in the sets vary. An example of two clouds of
points of different sizes is given in Figure 1. It is not obvious to provide an order to the constitutive points
of the clouds and their sizes differ, which prevents using Euclidean distance between the two clouds.
Although there exist various ways for defining a distance between sets, such as the Hausdorff distance, we
will see that not all of them allow to define semi-definite positive kernels.

In the following subsections, we provide an overview of related work, where the definition of kernels
over objects such as strings, texts, images, shapes and pyramids is discussed. Like with the clouds of
points, many of these objects are formalized as sets of varying sizes.

1.2 Related work

Recent research has covered the topic of kernels over non-vectorial inputs such as character strings and
graphs. For instance, (2) provides a general approach to the comparison of such discrete objects through
convolution kernels.

Kernels over strings and texts. In (3), kernels over strings relying on Support Vector Machines
(SVM) called mismatch kernels are discussed. For the same purpose Fisher kernels introduced in (4) can
deal with non-vectorial objects such as strings for use with generative models. Although strings objects
may have variable length and are not numeric, these methods seem hard to apply on sets of vectors where
there is no obvious concatenation structure.
(5) studied relational kernels that can deal with variable-length sequences and weighted automata. Al-
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though these contributions do share similar features with the case at hand, mainly handling variable-
dimension problems, they come with a stringent framework (concatenation or automata structures) that
proved difficult to adapt to sets of points. As with strings, text data can also be learned with kernel
methods in classification scenarios with a set of features representation. (6) carried out a matching task
on instances across different domains, for instance between documents and tags. Their idea consists in
estimating a latent set of features for each instance and embed these representations into a shared RKHS.
The authors show the usefulness of a set representation with such data but stop short of comparing the
performances of the different kernels and distances between sets.

Kernels over graphs. Many papers are also devoted to constructing semi-definite positive kernels
on other discrete objects such as graphs. It is the case in (7), where the authors use diffusion kernels by
using the exponential of square matrices defined over graphs. However, this work focuses on discrete sets,
which prevents using its methods on clouds of points defined over continuous domains.
Graph kernels can have applications in learning non-vectorial data having an underlying linked structure
such as shapes and lines. For instance, it is demonstrated in (8) that learning over point clouds An example
of learning over clouds of points carried out with a kernel over graphs can be found in (8). Some of the
defined kernels in (8) are proven to be semi-definite positive.
In this article, we do not assume clouds of points to have an underlying graph structure because the local
descriptors (individual points) have no obvious and unique linking structure. The authors of (9) also
propose kernels for linked, graph-like, objects, but they proceed in a different way. At first, they model a
graph as a bag of paths. The authors then define kernels between paths and construct the final kernels
between graphs through different averaging techniques of the path kernels. This representation is quite
similar to some of the approaches we will soon consider (the MMD and n-MeanMap kernels, see later).

Kernels over images through bags of features representation. Other types of structures, such
as images, can be learned with kernel methods. Transforming images to bags of features and considering
kernels between these features is the approach proposed in (10). The authors analyze many strategies for
averaging the kernel over the features. Though they show some good performances in combining them
with support vector machines, no conclusion is drawn regarding the semi-definite positiveness, which is
a necessary condition for Gaussian processes. This type of modeling is also mentioned in (11). In this
later work, the discussion concerns kernel averages between bags of features with a similarity function
over the local descriptors i.e., the elements composing the bag. If the similarity function between the
local descriptors is a kernel, called minor kernel, the resulting average function is also a kernel. Any
theoretical result about its semi-definite positiveness is proven when the minor kernel is multiplied by a
weight function.
Kernels over bags of features for images are also studied in in (12), where the objective is to learn one
class at a time on images. The studied kernel computes a similarity between two images by comparing the
grey level of pixels with some defined correspondence and has links to the Hausdorff distance. Sets of
vectors are not generally associated to levels as in images. Once again, the analogy ends there so that this
method cannot be directly applied to our setting.

Kernels over shapes seen as sets of points. In (13), a kernel over sets of points is implemented in
the framework of the optimization of a wind farm. The defined kernel is an average kernel over all the
pairs of the two sets. Later in our article, we will also consider a such kind of kernel (which we will call
n-MeanMap) among other kernels. Several of our test functions will also be related to wind fields, but not
all of them.
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Similarly, in (14), the automatic detection of road signs using support vector machines based on dissimi-
larity distances between outlines is discussed. The outlines are modeled as sets of points having specific
geometric characteristics, such as triangles or squares. The authors focus on the Hausdorff distance to
measure the dissimilarity between two shapes. They show good performances, but show that the distance
is not conditionally definite negative, which is necessary in our Gaussian process framework.
A classification application to real human time-series motion data, where the objective is to determine
whether a given individual is walking is done in (15). The authors propose a marginalized kernel on
bags of vectors with switching linear dynamics. They interpret it as a combination of hidden Markov
models and linear dynamics. In this case, the base kernel is a probability product kernel, where the latent
distributions are assumed to be Gaussian distributions.

Kernels over pure sets of points with no intermediary representation. Resorting to distances
between objects in order to define kernels is not a novel idea. It is the main topic in (16), where distances
between sets are identified in order to construct two type of kernels : set kernels in the proximity space
based on a representation set as in (17) and set distance substitution kernels. However, many of the
resulting kernels are not positive definite.
A well-known paper discussing kernels between two sets of vectors X = {x1, ..xm} and X ′ =
{x′

1, ...,x
′
n} is (18). Here, the core idea is to consider the two sets as being drawn from two dis-

tributions P and P ′ From there, the authors define k(X,X ′) as k(P, P ′) based on Bhattacharyya’s affinity
(19). A benefit of this method is that some of these kernels can be expressed in closed forms. In our paper,
we compare them to other types of kernels.
In the same vein, (20) and (21) suggest embedding distributions into a Reproducing Kernel Hilbert Space
(RKHS) with a strictly positive kernel, which then allows them to ensure that the induced metric is a
distance. The authors demonstrate the positive definiteness of the resulting kernels and show that they can
be used in Bayesian optimization. In the following we will, among other things, empirically discuss the
influence of the kernel that performs the embedding.

Kernels over sets through histogram pyramid representation. Other techniques, which are
not considered in this work, define kernels over non ordered objects, such as the pyramid match kernel
developed in (22). It is built on the idea of associating to each set of vectors a histogram pyramid. The
similarity between two sets is measured by estimating the overlapping area of the pyramids with different
weights.

This paper is structured as follows. First, in Section 2, we discuss the modeling of clouds of points
as distributions or vectors and present the associated relevant methods for defining kernels. Then, in
Section 3, we introduce a benchmark of test functions and explain our experimental protocol. In particular,
extrapolation properties of the kernels are investigated by considering geometrical transformations of
possible training data sets. We present the results of the experiments and discuss the performances of the
kernels in Section 4. Section 5 summarizes our main conclusions and provides perspectives to this work.

2 Semi-definite positive kernels over clouds of points

We recall here the definition of a kernel and discuss how it is built in practice.
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2.1 Kernel functions and Gaussian processes: definitions and conditions

Given a set X , a function K : X × X −→ R is called a kernel if it is symmetric and semi-definite
positive, i.e., for any collection X1, ...XN ∈ X and c1, ..., cN ∈ R we have,

N∑
i=1

N∑
j=1

cicjK(Xi, Xj) ≥ 0 . (1)

Further details about positive definite kernels can be found in (23). The positive semi-definiteness is
necessary for kernels to be used in the definition of a Gaussian process. Indeed, if we assume that the
function of interest f is a Gaussian process (GP) observed at X1, . . . , XN , the variance of any linear
combination of the GP values

∑N
i=1 cif(Xi) must be positive and this variance is precisely the left hand

side of Equation (1).
The two conditions stated above can be summarized in the following statement.

Theorem 2.1 ((24)) K is a positive semi-definite kernel if and only if there exists a Hilbert space H, and
a function ϕ : X 7−→ H such that ∀X,X ′ ∈ X ,K(X,X ′) = ⟨ϕ(X), ϕ(X ′)⟩H.

The Theorem states that the kernels we are searching for must be scalar products in a Hilbertian space,
where the objects of interest are conveyed with a mapping ϕ. However, this mapping and the scalar
product ⟨·, ·⟩H are not always explicitly known and the image space of X by ϕ() can belong to an infinite
dimensional space. This characterization supports the undermentioned distinction between kernels with
explicit mappings and kernels with implicit mappings.

A particular family of interest for kernels with implicit mappings is made up of kernels in the form
of K(X,X ′) = σ2 exp(−Ψ(X,X′)

2θ2
). This requires Ψ to be Hermitian (symmetric in the real case) and

conditionally negative semi-definite (25) that is, for any N distinct sets of points, the following inequality
must hold:

∀ci ∈ R, ∀i = 1, . . . , N, with
n∑
i=1

ci = 0 ⇒
N∑
i=1

N∑
j=1

cicjΨ(Xi, Xj) ≤ 0 (2)

If Ψ(X,X ′) = dψ(ψ(X), ψ(X ′))2, where dψ is the the Euclidean distance between ψ(X) and ψ(X ′),
the respective images of X and X ′ into a metric space through a function ψ, the above conditions are
equivalent to having a Hilbertian metric, i.e., dψ is isomorphic to an L2 norm (26).

2.2 Modeling clouds of points

2.2.1 Modeling clouds of points as probability distributions

Many of the papers cited in the bibliography model sets of vectors by assuming underlying discrete or
continuous probability distributions. It should be noted that this representation changes the input space,
as the original space is composed of sets of vectors, which is different from the space of distributions.
However, in this work, the objective is not to retrieve a set of points from a distribution but simply to
define a kernel between such sets. For the discrete case, the most standard procedure is to consider a set
X = {x1, ...,xn} as being associated to a probability distribution 1

n

∑n
i=1 δxi . In this case, there is no

ambiguity between the set and the underlying distribution: the corresponding set is just the support of the
distribution.

It is is more difficult to find the original set when it is replaced with a continuous distribution. For
instance, we can consider a continuous probabilistic representation, typically relying on a parametric
distribution. We will soon investigate the possibility of associating a cloud of point X = (x1, ..xn) to
its empirical Gaussian distribution, N (m(X),Σ(X)), with mean m(X) = 1

n

∑n
i=1 xi and covariance

matrix Σ(X) = 1
n

∑n
i=1(xi −m(X))(xi −m(X))⊤ . We will denote in the following the probability

distribution associated to a cloud X as PX , regardless of whether it is continuous or discrete.
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2.2.2 Modeling clouds of points as vectors of features

It is also possible to represent a set of vectors as a vector of features made of geometrical properties and
other characteristics of the cloud. An example of a feature is the size of the set. This representation allows
us to circumvent the problems related to the variable size of the sets and the notion of order between
their points. Details about this construction will be discussed with the Relevant Feature Map kernel in
Subsection 2.3.2.

2.2.3 Defining a kernel with an intermediary mapping

Once one of the two previously described representations is adopted, we are faced with the problem of
defining kernels over probability distributions or fixed size vectors. This transposition allows for a broader
choice of available kernels. With a kernel KP defined over a space P of probability distributions (or KV

defined over a space of vectors E), a mapping w : X −→ P (or E for vectors), we can construct K over
X based on the following result:

Proposition 2.1 (see (27)) Let w : X −→ Y and let KY be a kernel function on Y . Then KY ◦ w is a
kernel function on X .

Note thatKY◦w(X,X ′) = KY(w(X), w(X ′)). When defining kernels in this way, we may be confronted
with the lack of richness (mainly dimension) of the image space of w. It is generally the case when w is
not one-to-one, i.e., it is not injective.

2.3 Kernels with implicit mappings

In the remainder all the considered kernels are homoscedastic: ∀X ∈ X ,K(X,X) is a constant.
We consider kernels with implicit mappings in the form of K(X,X ′) = σ2 exp(−Ψ(X,X′)

θ2
) where

Ψ(X,X ′) = dψ(ψ(X), ψ(X ′))2, ψ being a mapping from X into a probability Space, P , or an Euclidean
space E to be defined and dψ(, ) a distance defined with ψ. We refer to this kind of kernels as substitution
kernels with distance.

2.3.1 Substitution kernels based on a distance between probabilities

Two important distances between probabilities are the Wasserstein distance and Maximum Mean
Discrepancy (MMD) which we now focus on. Under some conditions, these two metrics can be used to
define a Gaussian process covariance.

Definition 2.1 (Wasserstein Distance) Let (E , dist) be a metric space. For p ≥ 1, we denote by Pp(E)
the set of probability measures on E endowed with the p-Wasserstein distance, defined as (see (28) for
more details)

Wp
p (P, P

′) = inf
γ∈Π(P,P ′)

∫
dist(x, x′)pdγ(x, x′) (3)

with Π(x, x′) all distributions over E × E with marginals P and P ′.

We suppose here that E is Rd.

The Gaussian case. Assuming that P = N (m,Σ), P ′ = N (m′,Σ′) and dist is the Euclidean
distance, we get

W2
2 (P, P

′) = ||m−m′||2 + tr(Σ + Σ′ − 2(Σ1/2Σ′Σ1/2)1/2) .

We use an approximation of W2
2 , as in (29),

W2
2 (P, P

′) ≈ ||m−m′||2 + ||Σ1/2 − Σ′1/2||2Frobenius .
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The last approximation becomes an equality when Σ1/2Σ′1/2 = Σ′1/2Σ1/2. Therefore, the approximation
being the sum of two Hilbertian metrics (deriving from scalar product), the following is a valid kernel:

K(X,X ′) = σ2 exp

(
−||m(X)−m(X ′)||2

θ21
−

||Σ(X)1/2 − Σ(X ′)1/2||2Frobenius
θ22

)
(4)

We call this kernel Gauss-Wass.

The discrete uniform case. It is not guaranteed that W2
2 of Equation (3) always verifies the conditions

of Equation (2) when P = 1
n

∑n
i=1 δxi , P

′ = 1
m

∑m
=1 δx′i and xi, x′j ∈ Rd with d ≥ 2, as it is explained

in (30). But we know ((31)) that if P and P ′ are two non-negative unidimensional measures in R with
P (R) = P ′(R) = 1,

W2
2 (P, P

′) = ||C−1
P − C−1

P ′ ||2Lp([0,1])

with CP (x) =
∫ x
−∞ dP , CP ′(x) =

∫ x
−∞ dP ′ their respective cumulative distribution functions and

∀r ∈ [0, 1], C−1
µ (r) = minx{x ∈ R ∪ {−∞} : Cµ(x) ≥ r}, the r percent quantile. In this one-

dimensional case, W2
2 (P, P

′) is symmetric and conditionally negative definite (see (32)). The sliced
Wasserstein distance, described below, generalizes the well-funded unidimensional Wasserstein distance
to many dimensions by averaging projections onto lines.

Definition 2.2 (Sliced Wasserstein Distance on empirical uniform) Consider the empirical probabili-
ties PX = 1

n

∑n
i=1 δxi , PX′ = 1

m

∑m
j=1 δx′j associated respectively to {x1, ..., xn} and {x′1, ..., x′m} with

xi, x
′
j ∈ Rd and S = {α ∈ Rd, ||α|| = 1}. The projected empirical measures on the line directed by

α ∈ S, denoted as α ∗ PX and α ∗ P ′
X are respectively given by 1

n

∑n
i=1 δ<xi,α> and 1

m

∑m
i=1 δ<x′i,α>.

The sliced Wasserstein distance is defined as,

SW 2
2 (PX , PX′) =

∫
S
W2

2α ∗ PX , α ∗ PX′)dα . (5)

Resorting to this version of the Wasserstein distance, we get,

K(X,X ′) = σ2 exp

(
−SW

2
2 (PX , PX′)

θ2

)
. (6)

The latter is symmetric and semi-definite positive, as stated in (33). It is denoted as Slice-Wass.

Instead of defining the distances directly between the distributions, it is also possible to map them
into another space equipped with an Hilbertian metric. For instance, one can embed the distributions into
a RKHS with an embedding kernel. If the embedding kernel is “characteristic”, the mapping from the
distributions to the functions is injective. The distance between distributions can be measured through
distances between their image functions, giving rise to the notion of Maximum Mean Discrepancy (see
(21)).

Definition 2.3 (Maximum Mean Discrepancy) Given a Reproducing Kernel Hilbert Space H with a
characteristic kernel (such as kH(x, .) = exp(− ||x−.||2

2θ2
)), the mean embedding of a distribution P is

defined as µ(.) =
∫
P (x)kH(x, .)dx. This allows to define the Maximum Mean Discrepancy between two

distributions P and P ′ with respect to kH as MMD2(P, P ′) = ∥µ− µ′∥2H.

We denote the embedding of PX as µX . It is easily computable for empirical distributions. With
PX = 1

n

∑n
i=1 δxi , we get, ∫

PX(x)kH(x, .)dx =
1

n

n∑
i=1

kH(., xi) ,

8
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and

⟨µX , µX′⟩ = 1

nm

n∑
i=1

m∑
j=1

kH(xi, x
′
j) . (7)

We call ⟨µX , µX⟩ the energy of the distribution PX , as in (35). If one develops the square norm between
two mean embeddings,

∥µX − µX′∥2H = ⟨µX , µX⟩+ ⟨µX′ , µX′⟩ − 2⟨µX , µX′⟩ ,

we obtain,

∥µX − µX′∥2H =
1

n2

n∑
i=1

n∑
j=1

kH(xi, xj) +
1

m2

m∑
i=1

m∑
j=1

kH(x
′
i, x

′
j)− 2

1

nm

n∑
i=1

m∑
j=1

kH(xi, x
′
j) .

Substituting the MMD distance into the squared exponential kernel, we have

K(X,X ′) = σ2 exp(−
∥µX − µX′∥2H

θ2
) (8)

which is symmetric and semi-definite positive. We denote this kernel MMD.

2.3.2 Substitution kernels based on Euclidean distances

Instead of mapping the clouds into a space of probabilities, one can also define a connection with a
vector of features.

Definition 2.4 (Relevant Features Map Kernel) Let us consider two sets of vectors X = {x1, ..., xn}
and X ′ = {x′1, ..., x′m}. Suppose that we have a multivalued mapping function ψ : X −→ Ro, with o a
finite integer. The image of any X ∈ X is in the form of of a vector (ψ1(X), ..., ψo(X)) ∈ Ro. We define
K(X,X ′) = σ2 exp

(
−
∑o

j=1
|ψj(X)−ψj(X

′)|2
θ2j

)
. K is symmetric and semi-definite positive.

In this article, we associate the following features to a given cloud of points:

• the coordinates of the mean

• the eigenvalues and eigenvectors of the empirical covariance matrix

• the cardinality of the set

• the largest and the shortest distances between points of the set.

Because the eigenvectors are defined up to their direction (minus eigenvector is also an eigenvector
with the same eigenvalue) and because we are in R2, we choose the eigenvectors in the first and fourth
quadrant of the plan. With this choice, there is no ambiguity on their definition. We denote the above
kernel RFK.

2.4 Kernels with explicit mappings

Recall with Theorem 2.1 that all kernels functions (symmetric and semi-definite positive) can be
written in the form k(X,X ′) = ⟨ϕ(X), ϕ(X ′)⟩H. It is the case of the following kernels,

K(X,X ′) = ⟨ µX
||µX ||

,
µX′

||µX′ ||
⟩H (9)

where, recall, µX is the mean embedding of a distribution associated to X . We call this kernel n-
MeanMap. The normalization allows to have a kernel verifying the homoscedasticity property, K(X,X)

9
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is independent of X . For µX and µX′ the embeddings of the discrete uniform distributions associated to
X and X ′, the detailed expression of the kernel is

K(X,X ′) =
1
nm

∑n
i=1

∑m
j=1 kH(xi, x

′
j)√

1
n2

∑n
i=1

∑n
j=1 kH(xi, xj)

√
1
m2

∑m
i=1

∑m
j=1 kH(x

′
i, x

′
j)
. (10)

It is worth noting that an embedding of the representing distribution is already applied before applying
the scalar product. Yet, the scalar product can also be directly defined in the distribution space. It is the
case of the Probability Product Kernels which we now introduce.

Definition 2.5 (Probability Product Kernels, see (36)) Suppose that we have two sets of vectors X , X ′,
their respective probabilistic space representations (Ω, PX), (Ω, PX′) and ρ ∈ [0, 1]. A Probability
Product Kernel is expressed as K(X,X ′) =

∫
Ω P

ρ
X(x)P

ρ
X′(x)dx. Identifying P ρX and P ρX′ as elements

of L2, we get K(X,X ′) =< P ρX , P
ρ
X′ >L2 , which makes it symmetric and semi-definite positive since L2

is a Hilbert Space.

Applying this definitions to the Gaussian distributionsPX = N (m(X),Σ(X)) andPX′ = N (m(X ′),Σ(X ′))
gives a closed formula:

K(X,X ′) = (2π)
(1−2ρ)d

2 |Σ(X)+|
1
2 |Σ(X)|−

ρ
2 |Σ(X ′)|−

ρ
2C(X,X ′) (11)

with

C(X,X ′) = exp
(
− ρ

2
m(X)⊤Σ(X)−1m(X)− ρ

2
m(X ′)⊤Σ(X ′)−1m(X ′) +

1

2
(m+)⊤(Σ+)⊤m+

)
where Σ+ = (ρΣ(X)−1 + ρΣ(X ′)−1)−1 and m+ = ρΣ(X)−1m(X) + ρΣ(X ′)−1m(X ′). If ρ = 1

2 , it
is called the Bhattachayra kernel and it is the Expected Likelihood Kernel when ρ = 1 (see (18)). In this
paper, we will use the estimated Gaussians discussed in 2.2.1 to test the Bhattachayra kernel, which we
call Bhatta.

3 Benchmark functions and experimental protocol

3.1 Analytical test functions

We now present several functions taking sets of vectors as inputs. These functions will serve to study
the aforementioned kernels, when used within Gaussian processes, with the goal to better understand the
relationship between the kernel and the approximated function. These functions are simplifications of
some of the many situations naturally parameterized as sets of vectors. Wind farms and well fields are two
examples, inspiring the wind farm proxy below. Design of experiments problems come down, in some
cases, to optimizing the Mindist function, which is another example of such functions. Finally, the inertia
function will also be considered. This function can be encountered, e.g., as the accumulated energy of
multi-components systems, or as the regularization term in ridge regression problems.

3.1.1 Wind farm proxy

A first family of test functions is the energy production of a wind farm. Each wind turbine yields a
certain amount of energy and is subject to the wake effect caused by neighboring turbines. The inputs are
in the form of X = {x1, ...,xn} with xi = (xi,1, xi,2) ∈ R2 (d = 2). Each xi represents the Cartesian
coordinates of a turbine. The considered test function is given below.

F ({x1, ...,xn}) =
n∑
i=1

( ∏
j, j ̸= i

fp(xj ,xi)

)
f0(xi) (12)

10
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and it represents the total yield considering all turbines. Details about the function fp (representing the
gain factor of xi in the presence of xj) and f0 (a constant representing the maximal yield of a given
turbine may be found in appendix. f0 is chosen to be a constant. In the remainder of the paper, we will
use the following notations:

• Fθ stands for functions that account for wind coming from one single direction θ ∈ (0, 360) .

• Fnd for functions modeling the average of n directions uniformly distributed in (0, 360).

We consider the followings test functions : F0, F90, F45, F40d.
We provide graphical representations of xi −→ fp(xj ,xi) with xj = (0, 0) for the 4 scenarios in Figure
2. These graphics show the amplitude of the wake interaction between two turbines, depending on their
relative position and the direction of the wind. For instance, in case θ = 0, we can notice that the scale
of the interactions are more important in the direction of the wind, and they only occur behind the fixed
turbine.

As Fθ are obtained by summing fp over all pairs of points, we give two examples (F0 and F45) of the
functions’ layouts in Figure 3, where 9 points are fixed and one is allowed to vary. The values next to the
points show their individual contribution to the total production. There is no unit of measure.We can see
that the yield of an additional point depends on the direction of the wind and the existing points (already
placed).

3.1.2 Mindist Function

The optimization of a design of experiments (DoE) is another important application that involves an
unordered set of vectors as input. A classical requirement for DoEs is that they correctly fill the space,
which can be expressed as maximizing the smallest distance between two points of the set. In compliance
with previous cloud notations, a design is written X = (x1, ...,xn) with xi ∈ Rd for some d ∈ N (later
we will focus on d = 2). Our second test function, FminDist for design function, is

FminDist(X) = min
i ̸=j

||xi − xj ||. (13)

This function will also be referred to as the Mindist function. De facto this function only depends on the
values of two elements of the input set, the two closest points, as opposed to the other functions of our
benchmark that factor in all of the set components.

3.1.3 Inertia Function

Lastly, we include the function modeling the inertia of a group of points in Rd (in our case d = 2). For
X = {x1, ...xn}, the Inertia function is given by :

Finert(X) =
n∑
i=1

||xi − X̄||2 (14)

where X̄ is the empirical average of the points coordinates, X̄ = 1
n

∑n
i=1 xi.

3.2 Experiments

Kernel acronyms. The tested kernels are the Maximum Mean Discrepancy (MMD) of Equation (8),
the Relevant Feature Kernel (RFK) of definition (2.4), the Sliced-Wasserstein kernel (Slice-Wass) of
Equation (6), the Gaussian Wasserstein (Gauss-Wass) of Equation (4), the normalized MeanMap kernel
(n-MeanMap) of Equation (9) and the Bhattacharyya kernel (Bhatta) of Equation (11).

11
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Figure 2: Representation of fp with θ = 90◦ at top left, θ = 45◦ top right, θ = 0◦ bottom left, and averaged
directions at bottom right.
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Figure 3: Representation of F0 and F45 with 9 fixed points and a one varying. The maximal contribution of a point
is fixed to 5.
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3.2.1 Experimental Protocol

The default design of experiments. The objective of the experiments is to study the effect of the
kernel on the predictive ability of conditional Gaussian processes. Our test functions are defined over
clouds of points of variable size, n, n ∈ {nmin = 10, .., nmax = 20}. For all functions except FminDist,
we choose the initial size of the training set as 300. This size is the average over the 11 sets sizes of
10× d× n, which yields 10d

11 ×
∑nmax

n=nmin
= n = 300. For FminDist, n ∈ {nmin = 3, ..., nmax = 8} and

we choose a design of size 200.

The random cloud design of experiments is implemented as follows:
1. The size of each cloud is randomly picked in n ∈ {nmin, . . . , nmax}.

2. Each point is uniformly sampled in the domain of the function.

Clouds of points generated with such procedure are called random in the following. This generative
procedure guarantees a uniform distribution of the size n and the points positions (once n is chosen), but
it does not guarantee a uniform design in the space of clouds of points with varying sizes. For example,
clouds generated through the geometrical transformations which we will soon introduce have a very small
probability of occuring. We use the random design to conduct the three types of experiments detailed
below with the following objectives: i) Study the suitability of the considered kernels to the considered
family of test-functions. ii) Study the extrapolation performances of the kernels on geometrically modified
clouds of points. This helps to assess the robustness of the joint choice of the initial random design and
the kernel, with regards to the function at hand.

Study of the embedding kernel, kH. The first experiment allows to choose the embedding kernel
for MMD and n-MeanMap. We investigate the influence of the different local kernels on random test
clouds of points. The considered embedding kernels are Matérn 5/2, Matérn 3/2, Laplacian and Gaussian
kernel (or RBF for radial basis function). We choose a hyperparameter for each dimension in order to
consider an anisotropic setting. The tests are carried out on the F40d function. The size of the testing data
is 1000 clouds.

Prediction on random clouds of points. In the second experiment, we study the prediction ability
of 6 kernels on a random design of cloud of points. The size of the testing data is 1000 clouds.

Prediction on geometrically transformed clouds of points. We want to investigate how learning
on random clouds allows to predict the function output for specific clouds of points, unlikely to occur as
random clouds. A simple and instructive construction for such alternative designs is by geometrically
transforming (ditating and rotating) a given random cloud. In addition to testing the extrapolation
properties of the kernels, this third experiment, by confronting anisotropic test functions (the wind farm
proxy with one wind direction) with geometrical transformations, is instrumental in better understanding
the relationship between the kernel, its hyperparameters, and the test function.

We thus study the prediction of the best learned kernels on horizontally, vertically, isotropically dilated
clouds of points and on rotated clouds of points. For a given cloud of points X = {x1, ...,xn}, we
note, Xθ

r , Xδ
d , Xδ

dh, Xδ
dv its rotated, isotropically dilated, horizontally dilated and vertically dilated

transformations. We have

Xθ
r = {Rθx1 + (I −Rθ)X̄, ..., Rθxn + (I −Rθ)X̄} ,

Xδ
d = {Dδx1 + (I −Dδ)X̄, ..., Dδxn + (I −Dδ)X̄} ,

Xδ
dh = {Dδhx1 + (I −Dδh)X̄, ..., Dδhxn + (I −Dδh)X̄} ,

Xδ
dv = {Dδvx1 + (I −Dδv)X̄, ..., Dδvxn + (I −Dδv)X̄} .

14
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Rotations and dilations are done with respect to the point cloud means, X̄ . In addition,

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
, Dδ =

[
δ 0
0 δ

]
, Dδh =

[
δ 0
0 1

]
, Dδv =

[
1 0
0 δ

]
,

where θ and δ are the rotation and dilation factors. The evolution of a cloud of points following 5 dilations
is sketched in Figure 4. The initial cloud is gradually dilated into the constraint square. The range of
the factor of dilation, δ ∈ [1, 10] (20 uniformly spaced values of δ), ensures that the obtained clouds
always remain in the square bounding the whole domain. Notice in Figure 4, upper-right plot, that the
most isotropically dilated clouds of points (δ = 10) are the most similar to the random clouds of the
design of experiments.The domain of the wind farm proxy is the square bounded by (−50,−50) and
(50, 50). Dilations are initialized (i.e., δ = 1) as random clouds within the square bounded by (−5,−5)
and (5, 5). The domains of the Mindist and Inertia functions are smaller, (−10,−10) à (10, 10) and so
is their initialization square when δ = 1 which is spanned by (−2.5,−2.5) and (2.5, 2.5). We will look
at the prediction performance for 20 transformations of 50 initial clouds, that is for a total of 1000 new
testing clouds.
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Figure 4: Illustration of the dilation transformation of clouds: initial cloud at top left with its mean (red bullet), the
5 isotropic dilations at top right, 5 vertical dilations at bottom left and 5 horizontal dilations at bottom right. Note
that the horizontal and vertical ranges vary between the plots.

3.3 Estimation of hyperparameters.

All the kernels that are investigated here are in the factorized form K = σ2R, with R a correlation
matrix. Adding the nugget effect as a hyperparameter, the kernels become K = σ2(R + υI) = σ2R′.
We denote the vector of hyperparameters as Θ. Their value is typically determined by maximizing the
log-likelihood criterion with respect to the data :

log p(Y |D,Θ) = −1

2
Y ⊤K−1Y − 1

2
log |K| − n

2
log(2π) . (15)
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In the case where K = σ2R′, we have

σ2(Θ) =
1

n
Y ⊤R′−1Y ,

log p(Y |D,Θ) = −1

2
(n log(σ2(Θ)) + log |R′|+ n+ n log(2π))

All hyperparameters are estimated by maximizing the log-likelihood with a BFGS algorithm, except for
Bhatta. For the latter, we choose a list of nugget effects and pick the one yielding the best likelihood
value since it is the only hyperparameter. Concerning the initialization of BFGS for each of the above
listed kernels and each function, 5 different initial sets of hyperparameters (except for RFK, where we
choose 9 initial points) are chosen and we keep the one yielding the largest log-likelihood at the end of
the optimization. Finally, given that the focus of this paper revolves around the GP covariance model, the
GP trend is considered to be constant and equal to 0, and is therefore not optimized.

4 Results and discussions

In this Section, we report the prediction performances of conditional GPs built from the investigated
kernels. The performances are quantified with the Q2 criterion. Suppose we have a function F to
approximate and M real observed input-outputs, {(X1, y1), ..., (XM , yM )}, not seen by the model during
training. Let Ŷ = {ŷ1, ..., ŷM} be the predicted values of a model, then we have,

Q2 = 1−
∑M

i=1(ŷi − yi)
2∑M

i=1(yi − ȳ)2
, (16)

with ȳ = 1
M

∑M
i=1 yi. Note that −∞ ≤ Q2 ≤ 1 and that the closer the Q2 value is to 1, the more

accurate we can estimate the model to be. Additionally, if the variance of Ŷ is very small, meaning the
function is flat in the testing zone, then it is difficult to obtain a positive Q2.

The performances of conditional GPs are also computed under the form of Mean Average Error (MAE),
which may sometimes give a different insight than the Q2 criterion. For the sake of clarity, the results in
terms of MAE are only provided in Appendix A.

4.1 Predictions on the wind farm proxy

Study of the embedding kernel on F40d. The effect of the embedding kernel is investigated with
the multi-directional wind farm proxy, F40d. Only two kernels depend explicitly on an embedding kernel,
MMD and n-MeanMap. The results, provided in Table 1, show that for the MMD based kernel, the
embedding kernel choice has a limited influence, as the obtained Q2 values are all around 0.9. The n-
MeanMap kernel seems slightly more sensitive to the embedding kernel, RBF and Matérn 5/2 embedding
kernels yielding better predictive performances. In the following, we choose Matérn 5/2 for MMD and
RBF for n-MeanMap. It is important to note that this is a choice made for the sake of simplicity, and that
there is no guarantee that the optimal embedding kernels for the other test functions considered in this
work correspond to the ones that are selected here.

K
kH RBF Laplacian Matérn

3/2
Matérn
5/2

MMD 0.901 0.895 0.907 0.906
n-MeanMap 0.734 0.625 0.681 0.700

Table 1: Q2 with different embedding kernels on F40d, the test clouds are a random design.
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Results on random clouds of points. Table 2 gathers the results obtained with all kernels on all
the wind farm proxy functions. Remember that the test group is generated with the random procedure of
Subsection 3.2.1.
The first observation concerns the probability-based kernels. On these functions, kernels based on a
discrete uniform distribution (Slice-Wass, MMD, n-MeanMap ) outperform Gaussian-based kernels
(Bhatta, Gauss-Wass). Among the kernels based on uniform discrete distributions, we can notice that
MMD and Slice-Wass yield better results than n-MeanMap. Besides kernels relying on the discrete
uniform distribution, the RFK (relevant features kernel) has a better average Q2 than Slice-Wass. The
overall best competitor for this set of experiments is the MMD kernel.
The second observation is a slight improvement of Gaussian based kernels and n-MeanMap on F40d. This
is related in part to the loss of individual point information with Gaussian measures modeling: with a
single wind orientation, the relative position of each pair of points and its relation to the wind direction is
the physical driving phenomenon; with an averaged effect over 40 wind directions, the relative positions
between turbines are less of a driving factor and the cloud as a whole starts having more effect on the
output. Concerning the wind farm proxy, only the three best performing kernels, namely, MMD, RFK and
Slice-Wass, are further investigated in the context geometrical transformations of random clouds.

Function
Kernels MMD n-

MeanMap
BHATTA RFK Slice-

Wass
Gauss-
Wass

F0 0.906 0.647 0.146 0.897 0.828 0.177
F45 0.868 0.623 0.160 0.893 0.821 0.187
F90 0.899 0.639 0.145 0.871 0.843 0.172
F40d 0.906 0.734 0.261 0.799 0.824 0.308

Table 2: Q2 of 6 kernels on all the wind farm proxy functions, the testing clouds come from a
random design.

Results on horizontally dilated clouds of points. Recall from Figure 4 that horizontally dilated
clouds of points and the design of experiments are different. Horizontally dilated clouds of points are
contained in rectangles with a small height and a varying width (growing with δ), whereas the clouds of
the random design are distributed in the largest encompassing square. This test can thus be considered
as an extrapolation test and degraded results are expected with respect to tests on a random design of
clouds. Table 3 shows the global Q2 for 1000 clouds of points containing 50 initial clouds of points each
dilated 20 times. It is seen that the MMD kernel yields better Q2’s than RFK on F0, F45, and F40d, but
presents the worst score on F90. We can also note the poor performance for RFK and Slice-Wass on F0.
Overall, MMD tends to provide the best predictive performance on this specific case, whereas RFK tends
to behave considerably worse than the other kernels.
More detailed results can be found in Figure 5 which provides the real wind farm proxies outputs (in
green) and the predictions of the different GPs as a function of the horizontal dilation. Observe in Figure 5
that the MMD predictor decreases more rapidly than the other kernels predictors (RFK for instance) when
δ becomes smaller. This is explained by the fact that the norm of the difference in distribution embeddings
(used to define the MMD) is sensitive to all clouds dilations. On the contrary, the RFK includes some
features that are invariant under the geometrical transformations, such as the size of a set (the number of
points), thus the GP with RFK predictions decrease more slowly. More explanations can be found in the
discussion Section 4.3.
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Function
Kernels MMD RFK Slice-

Wass
F0 0.05 -15.535 -10.033
F45 0.519 -0.879 0.397
F90 0.518 0.711 0.631
F40d 0.103 -2.415 -0.827

Table 3: Q2 observed on horizontally dilated clouds of points

Results on vertically dilated clouds of points. We observe in Table 4 the Q2 values obtained for
the vertical dilations of point clouds. Because the vertical dilation is perpendicular to the horizontal one,
the relative ranks of the kernels is inverted for the F0 and F90 functions, which are the same functions
after a 90◦ rotation. On the contrary of F0 and F90, the F45 and F40d functions are symmetric with respect
to a vertical or horizontal dilation. The relative rank of the kernels for these functions is the same for
horizontal and vertical dilations. The MMD yields better Q2 values on F45 and F90, and has the worst Q2
on F0. We also observe a poor Q2 of RFK and Slice-Wass on F90 while both are the best options on F0.
A detailed comparison of the GP predictions for varying δ is provided in Figure 6.

Function
Kernels MMD RFK Slice-

Wass
F0 0.422 0.698 0.732
F45 0.625 -0.732 0.146
F90 -0.079 -11.204 -12.407
F40d 0.247 -1.894 0.503

Table 4: Q2 observed over vertically dilated clouds of points.
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Figure 5: Wind farm proxy outputs as a function of the horizontal dilation δ: function output in green, Gaussian
process with RFK, MMD and Slice-Wass kernels in black, red, and blue. Wind orientations are 0◦, 45◦, 90◦ and the
40 directions (i.e., F0, F45, F90, F40d) from left to right and top to bottom. The curves are averaged over 50 clouds.
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Figure 6: Wind farm proxy outputs as a function of the vertical dilation δ: function output in green, Gaussian
process with RFK, MMD and Slice-Wass kernels in black, red, and blue. Wind orientations are 0◦, 45◦, 90◦ and the
40 directions (i.e., F0, F45, F90, F40d) from left to right and top to bottom. The curves are averaged over 50 clouds.

Results on isotropic dilated clouds of points. When the clouds are isotropically expanded, tests of
the kernels on the wind farm functions yield the Q2 values of Table 5. All of the tested kernels yield Q2
values around 0.9. As can be seen from the complementary Figure 7, all GP predictions, irrespectively of
the kernel, capture the trend of the true function. The predictions are particularly accurate for large δ’s.
Indeed, the training data set which is used to condition the Gaussian processes is similar to the clouds
generated with an isotropic maximal dilation where δ = 10. The Q2 values obtained here (Table 5) are
slightly better than the ones obtained with the random design (Table 2). This can be explained by the Q2
metric: the range of the test values is larger with these dilations than it was with the random design, which
creates a large variance at the denominator of the last term in Equation 16. This contributes to a higher
Q2.
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Function
Kernels MMD RFK Slice-

Wass
F0 0.933 0.952 0.893
F45 0.939 0.954 0.933
F90 0.942 0.931 0.879
F40d 0.940 0.974 0.975

Table 5: Q2 observed on isotropically dilated clouds of points

Results on rotated clouds of points. When the test clouds are created by rotating random clouds,
the prediction qualities of the GPs are those of Table 6. We note that RFK has the best Q2 on F0, F45,
F90. Slice-Wass has the highest Q2 on F40d. MMD being less sensitive to the rotation than RFK, it is
beaten by RFK, although its predictions are quite good. The accompanying prediction curves for varying
θ are given in Figure 8. The Q2 values obtained at the rotated clouds of points are smaller than those
at dilated (isotropic) clouds. While the dilation were simple motions away (for diminishing δ) from the
observed clouds with a monotonous decrease in output (return to the null GP mean, concentration of the
turbines) which matched the true function, the rotation is a more complex motion through the data base
and the true function has a non-trivial periodicity. In addition, the Q2 metric is penalized in the rotation
case by the small range of magnitude of the true function which can be seen in Figure 8.

Function
Kernels MMD RFK Slice-

Wass
F0 0.808 0.863 0.780
F45 0.780 0.877 0.802
F90 0.800 0.881 0.797
F40d 0.701 0.771 0.775

Table 6: Q2 observed on rotated clouds of points
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Figure 7: Wind farm proxy outputs as a function of the isotropic dilation δ: function output in green, Gaussian
process with RFK, MMD and Slice-Wass kernels in black, red, and blue. Wind orientations are 0◦, 45◦, 90◦ and the
40 directions (i.e., F0, F45, F90, F40d) from left to right and top to bottom. The curves are averaged over 50 clouds.
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Figure 8: Wind farm proxy outputs as a function of the rotation θ: function output in green, Gaussian process with
RFK, MMD and Slice-Wass kernels in black, red, and blue. Wind orientations are 0◦, 45◦, 90◦ and the 40 directions
(i.e., F0, F45, F90, F40d) from left to right and top to bottom. The curves are averaged over 50 clouds. Notice the
small range in outputs (vertical axis).

4.2 Predictions on the Inertia and Mindist functions

Results on random clouds of points. We can observe that on the Mindist function (FminDist),
all 6 kernels perform poorly, except for RFK and Slice-Wass (see Table 7). On Finert, while the
embedding-based kernels (MMD, n-MeanMap) yield better results in terms of prediction accuracy than
the Gaussian-based kernels (Gauss-Wass and Bhatta), their performance is slightly decreased when
compared to the wind farm proxy, while the Gaussian-based kernel performance is improved (compare
Tables 7 and 2).
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Function
Kernels MMD n-MeanMap BHATTA RFK Slice-

Wass
Gauss-
Wass

Finert 0.734 0.506 0.463 0.988 0.905 0.502
FminDist -0.051 0.035 -0.124 0.997 0.587 -0.064

Table 7: Summary of the Q2 observed on FminDist and Finert

Results on the dilated clouds of points. RFK also best extrapolates on isotropically dilated clouds
as seen from the Q2 values in Table 8) for Finert and FminDist. The accompanying prediction curves for
varying δ are in Figure 9.

Function
Kernels MMD RFK Slice-

Wass
Finert 0.901 0.982 0.845
FminDist -0.802 0.998 0.280

Table 8: Q2 observed on isotropically dilated clouds of points for the Finert and FminDist
functions.
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Figure 9: GP predictions and true output as a function of the isotropic dilation factor δ. The GP predictions based
on the RFK, MMD and Sliced Wasserstein kernels are in black, red and blue, while the true function is in green.
The functions are Mindist (left) and Inertia (right). The results are averaged over 50 clouds.

Results for rotated clouds of points. As can be seen in Table 9, the GP with RFK remains the best
model when predicting on rotated clouds for both the Inertia and the Mindist functions. The performance
of RFK on FminDist is not surprising since one of its features is precisely the function to learn. The
information for the Inertia function is also present in the features of the RFK since the eigenvalues of the
covariance matrix of the vectors set sum up to the Inertia function. This explains the high Q2 values of
RFK on Finert. The sliced Wasserstein kernel is quite good at handling rotations for Finert and, to a lesser
extent, for FminDist. MMD based kernels are not able to capture the Mindist information. Furthermore,
as is visible on the right plot of Figure 10, they are quite sensitive to rotations of the clouds, falling back
towards the GP mean more rapidly than other kernels as θ departs from (0 mod 2π).
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Function
Kernels MMD RFK Slice-

Wass
Finert 0.422 0.988 0.854
FminDist -0.025 0.998 0.206

Table 9: Q2 observed on rotated clouds of points for the Finert and FminDist functions.
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Figure 10: GP predictions and true output as a function of the rotation angle θ. The GP predictions based on the
RFK, MMD and Sliced Wasserstein kernels are in black, red and blue, while the true function is in green. The
functions are Mindist (left) and Inertia (right). The results are averaged over 50 clouds.

4.3 Discussion

We revisit our results with explanations coming either from the intrinsic nature of the kernels or from
the design of experiments.

4.3.1 Embedding based kernels

Regarding embedding based kernels, we focus on the optimal length scale values resulting from the
likelihood optimization. These characteristics are more related to the training data set and the test function
than to the intrinsic nature of the kernel.

MMD. The MMD squared exponential embedding kernels are controlled by two length scales, θ1 and
θ2, scaling the dimensions between two points x and x′ through |x1 − x′1|/θ1 and |x2 − x′2|/θ2. In Figure
11, the two length scales learned by MMD for various wind directions are represented as vectors. We can
notice that they are symmetrical for F0 and F90 with respect to the first bisector. The vector (θ1, θ2)⊤

points more in the direction of the wind (than in the perpendicular one) whereas for F45, it is almost
directed as the bisector. When 40 wind directions are considered on the average (F40d function), (θ1, θ2)⊤

is similar to that of F45 with larger length scale values.
The length scales should capture sensitivities that come from the physics inherent to the wind farm

proxies. For example, when the wind is at 0◦, the wind farm production changes more with vertical
displacements of the turbines (which rapidly enter or leave an interaction area) than with horizontal
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Figure 11: Vectors of length scales of the MMD embedding Matérn 5/2 kernel learned by maximum likelihood on
the wind farm proxy for various wind directions. Left: reminder of the turbine contributions for winds at 90◦,45◦,0◦

and 40 directions (left to right, top to bottom). Right: (θ1, θ2)⊤ vectors of length scales of the embedding kernel.

displacements. This sensitivity is retrieved in the MMD-based model first through θ1 > θ2, and then
through changes in the energy of the embedding, where the energy of the embedding is ⟨µX , µX⟩ (cf.
Equation (7)). This is illustrated in Figure 12, where F0 varies more quickly with vertical dilation than with
horizontal ones. The same property is observed for the energies of the embeddings. This characteristic of
the MMD model helps it to have a better Q2 on the horizontal dilation on F0 than RFK and Slice-Wass
(see Table 3). A complementary illustration is the top left plot of Figure 5 where the MMD predictor
augments as slowly as the function.

However, the vertical hyperparameter, θ2, is not optimally learned since the predictor augments very
slowly regarding the function. These differences can be explained in part by the following: for F0, θ1
corresponds to the x-axis and the direction of the wind is better learned since in this direction the variation
is more continuous (there are always interactions). However, θ2 which corresponds to the the direction
perpendicular to the wind, suffers from interactions that cease more quickly and abruptly and is not
accurately tuned.
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Figure 12: Variations of F0 (left) and averaged squared norm of the embedding (right) with respect to horizontal
and vertical expansions of the clouds. The length scales are learned on F0.

The function F90 varies more quickly under horizontal dilation than under vertical one. This is also
present in the learned energies. We observe the opposite phenomenon than for F0.
F45 varies similarly under horizontal and vertical dilation. As shown in Figure 13, we can also see this on
the embedding energies estimated in the MMD. The two hyperparameters are correctly learned to have
almost equal values and the kernel has a better Q2 on the two scenarios than RFK and Slice-Wass. The
predictions on F45 under vertical and horizontal dilations can be seen on the top right of Figures 5 and 6.
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Figure 13: Variations of F45 (left) and averaged squared norm of the embedding (right) with respect to horizontal
and vertical expansions of the clouds. The length scales are learned on F45.

F40d is characterized by an averaged effect of multiple wind directions. Therefore, there is not a
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Figure 14: Variations of F40d (left) and averaged squared norm of the embedding (right) with respect to horizontal
and vertical expansions of the clouds. The length scales are learned on F40d.

very privileged direction and the hyper-parameters learned are almost the same. This equivalence is also
present in Figure 14 when looking at the effects of horizontal and vertical dilations on the MMD model.
Similarly, the Q2 obtained with MMD on F40d on vertical and horizontal dilations are not so different as
read in Tables 3 and 4.
On all the wind farm proxy functions presenting directions of interactions, the MMD has shown different
behaviours under horizontal and vertical expansions of the inputs. These two types of sensitivities make it
less efficient than RFK under isotropic dilation, see Figure 7 and Table 5. As far as rotation is concerned
(see Table 6 and Figure 8), MMD has worse performances than RFK. We can observe that the predictor
is very sensitive to rotation unlike the other kernels, as seen in Figure 8. The observed results suggest
that MMD based kernels are more relevant to the modeling of functions having privileged directions of
variability.

n-MeanMap. As with MMD, the vector of length scales learned with the n-MeanMap kernel points
more towards the wind direction than towards its perpendicular (see Figure 15). Again, this is related to
the physics underlying the wind farm proxies, where turbines have longer interactions lengths along the
wind direction, which induces smaller output variations for turbine displacements in the wind direction,
and vice versa for displacements perpendicular to the wind direction. However, contrarily to the MMD,
the n-MeanMap kernel is linear in the space of the embeddings since it is a scalar product, cf. Equation (9).
This explains in part its less accurate predictions in comparison with the MMD.

4.3.2 Wasserstein distance based kernels

Sliced Wasserstein. The sliced Wasserstein kernels have a good score on most of our benchmark
functions. Thanks to the projections of the vectors onto a set of directions, anisotropic functions which
behave differently in each direction, can be learned. Thanks to the averaging, isotropic functions are
well represented too. Slice-Wass presents good performances on F0, F45 and F90 with just 10 projected
directions. For F40d we augment the number of directions to 40, so that the number of projections matches
the number of considered wind directions. We have also checked that Q2 on F40d is invariant under
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Figure 15: Vectors of length scales, (θ1, θ2)⊤, of the n-MeanMap embedding kernel learned by maximum likelihood
on the wind farm proxy for various wind directions.

π/2 rotation of the directions of projections of the kernel, it remains equal to 0.824. The large number
of projection directions of the kernel allows it to be less sensitive with respect to cloud rotations for
isotropic functions. This is quantified by the largest average Q2 on F40d (see Table 6). However, Sliced
Wasserstein constructed with uniform directions does not structurally (besides the training data base)
present a privileged direction. This limitation is in part quantified by the negative Q2 values on horizontal
dilated clouds of F0 (see Table 3) and vertical dilated clouds of F90 (see Table 4). Sliced Wasserstein
kernel also presents good performances on FminDist (although, of course, behind RFK), and on Finert.
The various results presented in this paper, as well as its theoretical properties, show that the Sliced
Wasserstein makes for a robust kernel over sets of points in the context of Gaussian processes.

Gaussian Wasserstein. We observe in Tables 2 and 7 that, under the scenarios of our experiments,
Gaussian Wasserstein based kernels do not yield good scores in comparison with the other kernels. This
can be partially explained by the fact that the individual characteristics of the points in the cloud are lost
when representing a given cloud through a single Gaussian distribution. The Gaussian distribution presents
a more isotropic nature than the uniform discrete ones. Also, Gaussian modeling suffers from a lack
of representation capacity (flexibility) as seen through its small number of parameters (cf. Equation 4).
However, we notice a slight, relative (with respect to itself), improvement on F40d and Finert of its
performances. This improvement can be related to the more isotropic nature of the modeled functions.

4.3.3 Feature Based Kernels

The following discussion addresses the chosen features to model a cloud of points as a vector. Different
results could be obtained with other features. First of all, note that RFK has good performances on several
of the considered functions (see Table 2 and Table 7). RFK cannot deal well with horizontal and vertical
dilation in general. It augments quickly under horizontal and vertical dilation (see Figure 5 and Figure
6 ). For example, F0 varies very slowly under vertical dilation and F90 varies slowly under horizontal
dilation whereas RFK always augments very quickly. This can be explained by the training data set in
which clouds of points dilated in a specific direction are not included. The kernel is not parameterized in
such a way to be sensitive to such geometrical transformations. This justifies the poor Q2 observed with
F90 and F0 respectively under vertical and horizontal dilation, see Tables 3 and 4.
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Given that the kernel has no privileged direction of dilation, it presents good results under isotropic
dilation, as is shown in Table 5 and Figure 7.

Under rotation, the kernel is less sensitive. RFK is constructed with several features invariant under
rotation, such as the mean, the size, the shortest and greatest distances between points and the shortest and
greatest distances to the mean. On Table 6, we can observe that RFK has the largest Q2 values on F0,
F45 and F90. It is only beaten by Slice-Wass on F40d. This is because the considered functions are not
particularly sensitive to point clouds rotations, as shown in Figure 8 .

We should notice that RFK has a Q2 value larger than 0.99 on FminDist (the best one compared with
the other kernels) because the function to approximate is a one of its features. This is further illustrated
in Figure 16, where we remove each feature (independently) by setting the corresponding length scale
hyperparameter equal to infinity, and observe that the predictor (based on RFK) fall in performance only
when we remove the shortest distance between points. All these results make it a good candidate kernel
over sets of points in general. However it is not always obvious to choose relevant features for given
functions.
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Figure 16: Effect of removing a feature on the Q2 of a GP with RFK on the FminDist function. The test set is
random.

4.3.4 Bhattacharyya kernel

With the Bhattacharyya kernel, we observe in Tables 2 and 7 almost the same phenomenon that
happens with Gaussian Wasserstein. We see that, under our experimental protocol, Bhatta yields poor
predictive performances on all the considered test functions. However, there is a slight improvement of
its scores on F40d and Finert. This is linked to the more isotropic nature of these functions, which better
suits the Gaussian representation.
As a side comment, we provide below a closed form expression of the correlation according to the
Bhattacharrya kernel, for two sets of points (in R2) that are dilations of each other. Notice that the
expression does not depend on the set X .

Proposition 4.1 For a given isotropic dilation factor ρ = 0.5, K(X,Xd) can be computed in a closed
form: K(X,Xd) =

2δ
1+δ2

.

The proof of this Proposition and a complementary illustration are given in Appendix B.

5 Conclusions and Perspectives

We have studied several candidate kernels for the Gaussian process modeling of functions taking
unordered sets of vectors as inputs. We have showed, through numerical tests, that the performances
of MMD-based kernels can be explained by the adaptation of its hyperparameters to the geometrical
properties of the studied functions. In contrast, it is found that the kernels based on Gaussian representation
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yield the worse performances, because these kernels tend to drown out the individual contribution of
each point of the cloud into an average effect, causing a loss of information. We have also seen with the
Relevant Features Kernel (RFK) that mapping the clouds of points into an Euclidean space and resorting to
standard kernels (e.g., Squared Exponential) can perform better than existing methods such as n-MeanMap
and compete, for some functions (and test cases), with MMD and Sliced Wasserstein kernels.These results
obtained with the Relevant Feature kernel encourage us to search for generic methods for defining and
computing suitable features on any given function.

Sliced Wasserstein kernels have also produced predictive models on many functions. These observa-
tions encourage to search for algorithms to find a reasonable number and adapted projection directions
to approximate the Sliced Wasserstein Distance, for instance through a parametric representation of the
projection directions coupled with a maximum of likelihood estimation.

The fact that MMD stumbles on the Mindist function calls for a non-uniform discrete probability model.
This could allow for varying the weight of each point, depending on the importance of its contribution to
the function of interest.

The ability of the different kernel-based models to extrapolate at the geometrically transformed (rotated
and dilated) clouds is limited. Obviously, all kernels become less predictive on horizontal, vertical and
rotated clouds of points. The decrease was more important with the horizontal and vertical dilations that
departed more from the randomly generated training set. Structural properties of the kernels, independently
of the learning set, also impact their sensitivity to certain transformations which, in turns, control the rate
at which the GP predictions return to the GP mean. For example, MMD based kernels are more sensitive
to dilations than our Relevant Features Kernel. Depending on the application, one should include in the
design of experiments (DoE) these kinds of clouds of points or think for a more general criterion for the
definition of the training data set. It not certain that a uniform design of experiments is always the right
choice for an application in which only specific characteristics of the point clouds are of interest.

Finally, it should be noted that all our numerical tests have been performed on two-dimensional point
clouds. Further experiments, assessing the coupled influence of the points dimension and the kernels on
the GP predictions is still necessary.
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A Tables of the Mean Absolute Errors (MAE) of the predictors

In the following m1 and σ1 correspond respectively to the mean and standard deviation of the real
values of the test functions.

K
kH RBF Laplacian Matérn

3/2
Matérn
5/2

MMD 1.807 1.767 1.725 1.719
n-
MeanMap

2.968 3.476 3.125 3.212

Table 10: MAE with different embedding kernels on F40d with a random design of experiments.
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Function
Kernels MMD n-

MeanMap
BHATTA RFK Slice-

Wass
Gauss-
Wass

F0 2.405 4.747 7.424 2.399 3.129 7.240
F45 2.873 4.916 7.388 2.412 3.193 7.238
F90 2.497 4.809 7.450 2.655 2.985 7.319
F40d 1.725 2.968 4.989 2.505 2.323 4.811

Table 11: MAE of 6 kernels on the 4 wind farm proxy functions with a random design of
experiments.

Function m1 σ1
F0 57.129 9.541
F45 57.185 9.554
F90 57.090 9.545
F40d 47.159 7.05

Table 12: m1 and σ1 of the testing data on the wind farm functions with a random design of
experiments.

Function
Kernels MMD RFK Slice-

Wass
F0 3.990 17.170 15.424
F45 4.835 9.533 5.680
F90 6.161 4.314 5.328
F40d 3.830 6.600 5.533

Table 13: MAE observed on horizontally dilated clouds of points.

Function m1 σ1
F0 11.832 4.522
F45 18.527 8.206
F90 25.413 10.229
F40d 11.832 4.522

Table 14: m1 and σ1 of the testing data on the wind farm functions considering horizontally
dilated clouds of points.

Function
Kernels MMD RFK Slice-

Wass
F0 6.917 4.194 4.143
F45 4.159 8.921 6.896
F90 3.944 12.483 16.254
F40d 3.365 5.968 2.815

Table 15: MAE observed on vertically dilated clouds of points.
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Function m1 σ1
F0 24.799 10.031
F45 18.375 8.091
F90 12.565 4.569
F40d 11.494 4.507

Table 16: m1 and σ1 of the testing data on the wind farm functions considering vertically dilated
clouds of points.

Function
Kernels MMD RFK Slice-

Wass
F0 3.601 3.203 4.691
F45 3.479 2.975 3.762
F90 3.292 3.630 4.715
F40d 2.923 1.749 1.875

Table 17: MAE observed on isotropically dilated clouds of points.

Function m1 σ1
F0 36.067 17.482
F45 35.777 17.601
F90 36.311 17.319
F40d 26.289 14.558

Table 18: m1 and σ1 of the testing data on the wind farm functions considering isotropically
dilated clouds of points.

Function
Kernels MMD RFK Slice-

Wass
F0 2.910 2.538 3.251
F45 3.187 2.367 3.076
F90 2.986 2.318 3.111
F40d 2.454 2.350 2.334

Table 19: MAE observed on rotated clouds of points

Function m1 σ1
F0 58.121 8.670
F45 58.109 8.659
F90 58.127 8.680
F40d 48.099 7.052

Table 20: m1 and σ1 of the testing data on the wind farm functions considering rotated clouds of
points.
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Function
Kernels MMD n-MeanMap BHATTA RFK Slice-

Wass
Gauss-
Wass

Finert 111.152 150.128 162.224 18.250 63.873 154.126
FminDist 2.071 2.106 2.246 0.072 1.387 2.124

Table 21: MAE observed on FminDist and Finert on random designs.

Function m1 σ1
Finert 945.585 268.012
FminDist 3.821 2.652

Table 22: m1 and σ1 of the testing data on FminDist and Finert on random designs.

Function
Kernels MMD RFK Slice-

Wass
Finert 110.191 33.878 79.292
FminDist 1.906 0.051 0.918

Table 23: MAE observed on dilated clouds of points.

Function m1 σ1
Finert 422.974 310.933
FminDist 2.006 1.577

Table 24: m1 and σ1 of the testing data on FminDist and Finert considering dilated clouds of
points.

Function
Kernels MMD RFK Slice-

Wass
Finert 151.726 18.824 74.663
FminDist 1.732 0.058 1.391

Table 25: MAE observed on rotated clouds of points.

Function m1 σ1
Finert 956.016 272.758
FminDist 3.210 2.102

Table 26: m1 and σ1 of the testing data on FminDist and Finert considering rotated clouds of
points.

B Dilation of the Bhattacharyya kernel

We want to compute the Bhattacharyya kernel K(X,Xd) in the case where Xd is the dilated version
of X .

We know that if X = {x1, ..., xn}, then Xd = {Dδx1 + (I −Dδ)X̄, ..., Dδxn + (I −Dδ)X̄}.
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First, consider the case where X̄ = m(X) = 0, and by consequence X̄d = m(Xd) = DδX̄ = 0. This
implies that K(X,Xd) = (2π)(1−2ρ)D/2|Σ+|1/2|Σ(X)|−ρ/2|Σ(Xd)|−ρ/2.

Knowing that Dδ = δI , we have Σ(Xd) = δ2Σ(X) ⇒ (|Σ(Xd)|)−ρ/2 = δ−2ρ(|Σ(X)|)−ρ/2.
We have Σ+ = (ρ(Σ(X))−1 + ρΣ(Xd)

−1)−1 and Σ(Xd)
−1 = 1

δ2
Σ(X)−1, then Σ+ = 1

ρ

δ2
+ρ

Σ(X).

Therefore K(X,Xd) = (2π)(1−2ρ)D/2 1
ρ

δ2

1+δ2
(|Σ(X)|)1/2δ−2ρ(|Σ(X)|)−ρ

In the case where ρ = 1/2, we get K(X,Xd) =
2δ

1+δ2
, which does not depend on the cloud X .

In the case where the cloud is not centered, we have K(X,Xd) =
∫
Ω P (x)

ρP ′ρ(x)dx with Ω = R2.
A simple translation allows us to return to centered clouds and 0 mean Gaussians.

The closed-form expression for the correlation is compared to the expression based on Bhattacharyya
kernel for varying δ in Figure 17. The two curves are perfectly superimposed (red on black).
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Figure 17: Correlation between two clouds isotropically dilated by a factor δ as expressed from the Bhattacharyya
kernel (Equation (11)) and its specialization to this case (Proposition 4.1). The two curves are perfectly superimposed.

C Details about wind farm proxy

We consider the canonical basis of the plan (e1, e2) with e1 = (1, 0) ∈ R2 and e2 = (0, 1) ∈ R2. We

denote by Rα the following transformation:
[
cosα − sinα
sinα cosα

]
. For a given wind in the direction of e1,

the production function can be written as:

F ({x1, ..., xn}) =
n∑
i=1

( ∏
j, j ̸= i

fp(xj , xi)

)
f0(xi) (17)

We consider the case where f0 is constant and fp(xj , xi) represents the wake effect on xi that is caused
by xj . Its general formula, in the case where the direction of interaction coincides with the x-axis, is
displayed below:
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fp(xj , xi) =

{
1 if xi,1 ≤ xj,1

(
||xi−xj ||

1+||xi−xj ||fL(xj , xi) +
1

1+||xi−xj ||fθ(xj , xi))fprox(xj , xi) if xi,1 > xj,1
(18)

Before describing fL, fθ and fprox, we mention that the two terms of fp are weighted with by functions
depending on the distance between the two points. fL corresponds to a power gain depending on the
distance between turbines. Its expression is the following:

fL =
1

1 + exp(−p1(∆− l))

with p1 and l parameters of the function and ∆ = (xi,1 − xj,1)
2 +6(xi,2 − xj,2)

2. Concerning the second
term, we have:

fθ(xj , xi) =


0 if xi = xj
1 if xi,1 = xj,1, xi ̸= xj
2
π arctan(

|xi,2−xj,2|
|xi,1−xj,1|) otherwise

(19)

The component fθ quantifies the gain depending on the angle −̂→u ,−−→xixj , with −→u the direction of interaction.
The result is multiplied with a third function in order to further penalize the proximity between turbines.
We have

fprox(xj , xi) =
1

1 + exp(−p2(∆′ − radius))

with p2, radius positive parameters and ∆′ = ∥xi − xj∥. We can notice that all the terms of Eq. 18
are between 0 and 1, which results in fp ∈ [0, 1]. In order to implement a function modeling the effect
of a wind in the direction of Rαe1 (with α ∈ (0, 2π)), we compute the coordinates of the inputs in the
basis (Rαe1, Rα+π/2e1) and apply the last function on the new inputs (with the new coordinates). The
values of p1, p2 for the 3 functions defined above are respectively 0.15 and 0.5. We choose l = 10 and
radius = 3 for F0 and F45. Concerning F40d, for the parameters l and radius, 40 values are uniformly
chosen respectively in (1, 30) and (1, 15).

D Invariant translation kernel

We know than we can make a kernel invariant under translation by computing the correlation between
centered clouds of points. However, this approach is not considered in this paper in the above kernels. A
numerical illustration is given below.
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Figure 18: Prediction for a translated group of turbines, considering the wind farm proxy function.

39


	Introduction
	General context
	Related work

	Semi-definite positive kernels over clouds of points
	Kernel functions and Gaussian processes: definitions and conditions
	Modeling clouds of points
	Modeling clouds of points as probability distributions
	Modeling clouds of points as vectors of features
	Defining a kernel with an intermediary mapping

	Kernels with implicit mappings 
	Substitution kernels based on a distance between probabilities 
	Substitution kernels based on Euclidean distances

	Kernels with explicit mappings

	Benchmark functions and experimental protocol
	Analytical test functions
	Wind farm proxy
	Mindist Function
	Inertia Function

	Experiments
	Experimental Protocol

	Estimation of hyperparameters.

	Results and discussions
	Predictions on the wind farm proxy
	Predictions on the Inertia and Mindist functions
	Discussion
	Embedding based kernels
	Wasserstein distance based kernels
	Feature Based Kernels
	Bhattacharyya kernel


	Conclusions and Perspectives
	Tables of the Mean Absolute Errors (MAE) of the predictors
	Dilation of the Bhattacharyya kernel
	Details about wind farm proxy
	Invariant translation kernel

